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1 Introduction

In this study, I apply the method of Dynamic Model Averaging, DMA hereafter, to forecast

monthly CPI inflation in Russia 1 through 6 months ahead. This method was developed by

Raftery et al. (2010) and illustrated using an engineering application. Koop and Korobilis

(2012) was the first paper that applied this methodology to forecast the US inflation. Koop

and Korobilis (2011) use this method to forecast UK macroeconomic variables and compare

its performance with other data-rich models. Byrne et al. (2018) is an application of DMA

to forecasting exchange rates while Dangl and Halling (2012) to forecasting stock returns.

The DMA assumes that the data-generating process for inflation is not known with

certainty. It states instead that, with some probability, inflation data can be generated by

any of K alternative models, which differ in terms of a set of predictors employed. The DMA

forecast on date t is obtained as a weighted average of forecasts produced by all alternative

models with weights proportional to the predictive density of the respective individual model

k ∈ {1, . . . , K} on date t. In that respect, the DMA is a generalization of the Bayesian Model

Averaging, BMA hereafter, a conventional approach to dealing with model uncertainty in

Bayesian econometrics – see, e.g., ch. 11 in Koop (2003) for a general discussion and Geweke

and Whiteman (2006) for application to forecasting. Wright (2009) applies the BMA to

forecast inflation in the US. Unlike BMA, the DMA method allows the identity of a model

that generates data to randomly change over time. Furthermore, DMA feature time-varying

parameters and stochastic volatility.

I conduct a standard pseudo-out-of-sample forecasting exercise for the DMA forecast

and a set of benchmark forecast on data sample 2002M1-2017M9 using first 60 months of

observations as an initial estimation sample. My findings suggest that the DMA does not

produce forecasts superior to simpler benchmarks even if a subset of individual predictors is

pre-selected “with the benefit of hindsight” on the full sample. The two groups of predictors

that feature the highest average values of the posterior inclusion probability are loans to

non-financial firms and individuals along with actual and anticipated wages.
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The rest of the paper is organized as follows. Section 2 presents the methodology of

the DMA and lays out details of the pseudo-out-of-sample forecasting exercise. Section 3

describes data. Section 4 exhibits and discusses empirical findings, and Section 5 concludes.

2 Methodology

2.1 Dynamic Model Averaging

The description of the DMA method follows closely Koop and Korobilis (2012). I denote

by yt the variable to be forecast. In this exercise, this variable is the monthly rate of CPI

inflation. If the forecast horizon is h, then

yt+h = 1200 log

(
CPIt+h
CPIt+h−1

)
,

i.e. yt is the annualized growth rate of the Consumer Price Index (CPI) between dates t+h−1

and t + h. The vector of all potential predictors is zt. It contains lagged values of monthly

CPI inflation and other macroeconomic variables that potentially have some forecasting

value with regard to future inflation. I consider all alternative forecasting models, each

using a different subset of zt as predictors. If the dimensionality of zt is M , then the overall

number of all subsets of zt is K = 2M , and so is the number of all alternative forecasting

models that can be constructed from zt. There is no prior knowledge of which particular

combination of predictors yields the best forecast. Furthermore, the performance of each

individual forecasting model can change over time.

Suppose that model k uses a subset z
(k)
t ⊆ zt, k = 1, . . . , K, as predictors. Then it can

be written as

yt = z
(k)′

t θ
(k)
t + ε

(k)
t (1)

where θ
(k)
t is a vector of time-varying unobserved parameters that follows a vector random
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walk process

θ
(k)
t+1 = θ

(k)
t + η

(k)
t+1 (2)

with a disturbance term being multivariate normal:

η
(k)
t ∼ i.i.d.N (0, Q

(k)
t )

In the language of state-space models, equation (2) is called the law of motion for the

unobserved state θ
(k)
t or, simply, state equation, whereas equation (1) is called measurement

equation. The error term in the measurement equation (2) is assumed to be normal:

ε
(k)
t ∼ i.i.d.N (0, H

(k)
t )

Denote by yt the history of observations of the CPI inflation up to date t, yt ≡ (yt, yt−1, . . . , y0),

and by Lt the identity of the model that generates data on date t. Conditional on model k

being the data-generating process (DGP hereafter) on date t − 1 and given the history of

observations up to date t−1, the vector of parameters has a multivariate normal distribution

θt−1
∣∣Lt−1 = k, yt−1 ∼ N

(
θ̂
(k)
t−1,Σ

(k)
t−1|t−1

)

where, with some abuse of notation,

θ̂
(k)
t ≡ E(θt

∣∣Lt = k, yt ),

Σ
(k)
t|t ≡ E

[
(θt − θ̂(k)t )(θt − θ̂(k)t )′

∣∣Lt = k, yt
]

Conditional on model k being the DGP on the next date, date t, a one-step ahead forecast

of θt is

θt
∣∣Lt = k, yt−1 ∼ N

(
θ̂
(k)
t−1,Σ

(k)
t|t−1

)
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where

Σ
(k)
t|t−1 ≡ E

[
(θt − θ̂(k)t−1)(θt − θ̂

(k)
t−1)

′ ∣∣Lt = k, yt−1
]

Finally, an updated estimate of θt that exploits the information available on date t and is

conditional on model k being the DGP on date t, i.e. the nowcast of θt, is

θt
∣∣Lt = k, yt ∼ N

(
θ̂
(k)
t ,Σ

(k)
t|t

)

Given the law of motion for θ
(k)
t , equation (2), the conditional variances of the one-step-

ahead forecast and nowcast, both conditional on model k being the DGP on date t, are

related as

Σ
(k)
t|t−1 = Σ

(k)
t−1|t−1 +Q

(k)
t

where the covariance matrix of the disturbance term in state equation (2), Q
(k)
t , is unobserved

and, hence, has to be estimated. Following Raftery et al. (2010) and Koop and Korobilis

(2012), I use an approximation by assuming that

Σ
(k)
t|t−1 =

1

λ
Σ

(k)
t−1|t−1 (3)

where smoothing parameter λ is set very close to one from below, 0 < λ . 1.

An application of standard Kalman filter formulas yields an updating equation for θ
(k)
t

and Σ
(k)
t|t :

θ̂
(k)
t = θ̂

(k)
t−1 + Σ

(k)
t|t−1z

(k)
t

(
H

(k)
t + z

(k)′

t Σ
(k)
t|t−1z

(k)
t

)−1 (
yt − z(k)

′

t θ̂
(k)
t−1

)
Σ

(k)
t|t = Σ

(k)
t|t−1 − Σ

(k)
t|t−1z

(k)
t

(
H

(k)
t + z

(k)′

t Σ
(k)
t|t−1z

(k)
t

)−1
z
(k)′

t Σ
(k)
t|t−1

The probability density of θt−1 conditional on the history of observations up to date t− 1 is

obtained as a weighted average of model-specific nowcast densities:

p(θt−1
∣∣yt−1 ) =

K∑
k=1

p(θt−1
∣∣Lt−1 = k, yt−1 )Pr(Lt−1 = k, yt−1)
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where

p(θt−1
∣∣Lt−1 = k, yt−1 ) ∼ N

(
θ̂
(k)
t−1,Σ

(k)
t−1|t−1

)
Now I introduce some new notation for the probability of model l being the DGP on date

t conditional on the history of observations up to date s, s ≤ t:

πt|s,l ≡ Pr (Lt = l |ys )

It follows that

Pr
(
Lt−1 = k

∣∣yt−1 ) = πt−1|t−1,k

The DMA framework assumes that the identity of the data-generating model can be

different on different dates. In general, the process of switching between alternative data-

generating models can be characterized by an unrestricted matrix of transition probabilities

P = (pkl)
K
k,l=1

where pkl is the probability of model k being the DGP on date t conditional on model l

being the DGP on date t − 1, and
∑K

k=1 pkl = 1. The model prediction equation can then

be written as

πt|t−1,k =
K∑
l=1

πt−1|t−1,lpkl (4)

The difficulty with the unrestricted matrix P is that it introduces a big number of additional

parameters to be estimated. These parameters are transition probabilities pkl. As a result,

the estimation problem is difficult to handle even when the number of predictors in zt is

moderate. In order to circumvent this obstacle, Raftery et al. (2010) replace equation (4) by

an approximation:

πt|t−1,k =
παt−1|t−1,k∑K
l=1 π

α
t−1|t−1,l

where α is a forgetting factor that is set very close to one from below, 0 < α . 1.
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Given πt|t−1,k and yt, the updating equation for πt|t,k is

πt|t,k =
πt|t−1,kpk(yt|yt−1)∑K
l=1 πt|t−1,lpl(yt|yt−1)

where

yt|Lt = k, yt−1 ∼ pk(yt
∣∣yt−1 ) ≡ N (z

(k)′

t θ̂
(k)
t , H

(k)
t + z

(k)′

t Σ
(k)
t|t−1z

(k)
t )

The DMA recursive point forecast is then obtained by averaging of point forecasts of

all individual models with weights equal to conditional probabilities of the respective model

being the DGP on the date for which the forecast is made:

E(yt|yt−1) =
K∑
k=1

πt|t−1,kz
(k)′

t θ̂
(k)
t−1 (5)

Along with the DMA forecast, I also compute the DMS point forecast, which is the point

forecast of the model with the highest conditional probability of being the DGP on the date

for which the forecast is made:

k∗ = argmaxkπt|t−1,k

E(yt|yt−1) = z
(k∗)′

t θ̂
(k∗)
t−1

It is straightforward to see that, given H
(k)
t , π0|0,k and θ

(k)
0 , k = 1, . . . , K, one can apply

derived analytical formulas to compute forecasts with no need to run MCMC posterior

simulations, which are likely to be computationally demanding and time consuming in this

case. This lightens the computational burden significantly.

Following Koop and Korobilis (2012), the variance of the error term in the measurement

equation (1) is estimated as

Ĥ
(k)
t = κĤ

(k)
t−1 + (1− κ)

(
yt − z(k)

′

t θ̂
(k)
t

)2
where κ is a decay factor, 0 < κ < 1.
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Dangl and Halling (2012) suggest one more layer of averaging – by forgetting factor λ in

equation (3). A higher value of λ implies that the uncertainty introduced by an innovation

in the error term of state equation (2), ηt+1, is small. This might be true in tranquil times

but not in times of turbulence. In order to account for time variation of uncertainty caused

by innovations to the vector of coefficients θt, Dangl and Halling (2012) allow the foregetting

factor λ to vary over time. This is implemented as the following. They consider a grid of

values for λ, say, λj ∈ {0.90, 0.91, . . . , 1.00}. Conditional on λj, j = 1, 2, . . . , J , a forecast

is obtained by formula (5). Finally, all forecasts E (yt |yt−1, λj ) are averaged with weights

equal to posterior probabilities Pr (λj |yt−1 ) to yield an ultimate forecast:

E
(
yt
∣∣yt−1 ) =

J∑
j=1

Pr
(
λj
∣∣yt−1 )E (yt ∣∣yt−1, λj )

2.2 Pseudo out-of-sample forecasting

With the data described in the next section, I evaluate the retrospective performance of

forecast based on DMA and DMS and compare it with the performance of a few bench-

mark forecasts. The benchmark forecasts that I employ are those produced by Bayesian

Model Averaging and Bayesian Model Selection (Koop and Potter (2004); Wright (2009)),

Unobserved Components – Stochastic Volatility model (Stock and Watson (2007)), Bayesian

autoregression of order 2, separately, with time-invariant and time-varying coefficients, DMA

applied to a minimalist set of predictors that includes an intercept and two lags of inflation,

and, finally, the “kitchen sink” model with time-varying parameters.

Taken literally, the DMA considers as an individual model any possible mix of predictors

from the pool with the size varying from one – a time-varying intercept and one predictor

with a time-varying coefficient – to M where all predictors from the pool along with the

intercept are included (at least, in the implementation of Koop and Korobilis (2012)). DMA

then averages out over those individual models with weights equal to posteriors probabilities

of a respective model being the data-generating process on a given date. The overall number
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of individual models equals K = 2M . A data set containing M = 40 time series is quite

moderate by modern standards. For example, a popular data set composed by Stock and

Watson (2012) contains about 200 quarterly U.S. macro series. If M = 40, i.e. five times

fewer than the size of Stock and Watson (2012)’s dataset, the number of models K = 2M is

of the order of 1012. Handling such a big number of models requires quite a lot of computa-

tional power and prohibitive amount of time needed for computations on a research-purpose

desktop or laptop computer with typical technical characteristics. For this project, I have

employed the R package called eDMA (Catania and Nonejad (2018)), which features efficient

algorithms and parallel computations. If M = 20 and the number of time observations is

189, my ASUS laptop with Intel Core i9 12-core processor and 64 GB of RAM completes all

computations for the main exercise within about 10 minutes. Adding each extra predictor

doubles the number of models and, hence, computation time. Once the number of predictors

increases by 20, i.e. from M = 20 to M = 40, then the computation time rises by the factor

of 220 ≈ 106 and approaches 1/6× 106 ≈ 19 years, which is prohibitively high.

Several approaches aiming to keep the number of individual models manageable are

known in the literature. In an engineering application, Raftery et al. (2010) employ 5 pre-

dictors and consider only 17 their combinations as candidate DGPs, the selection being based

on some external information about physical processes involved. In his inflation forecast-

ing exercise by BMA, Wright (2009) considers only individual models each containing an

intercept, lagged inflation, and one predictor thus limiting the number of models to K = M .

Other papers impose an upper limit on the number of exogenous predictors: M = 14 in Koop

and Korobilis (2012), and M = 15 in Groen et al. (2013). Both papers forecast inflation

in the U.S. Onorante and Raftery (2016) nowcast Euro area GDP employing 30 predictors.

The curse of model space dimensionality is circumvented by introducing stochastic search

over the space of models. An important assumption needed for the approximation to be

well-grounded is that DGP has to smoothly transit from one model to another (Catania and

Nonejad (2018)). The inspection of posterior inclusion probabilities in Onorante and Raftery
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(2016) and other papers, which feature occasional swings, suggests that this is unlikely to be

the case. The interim conclusion seems to be that, given the present state of available com-

putational power, the number of predictors that DMA is able to accommodate for practical

purposes is unlikely to exceed 20-25.

In this study, I use a data set of 97 macro series for Russia that cover the time period

January 2002 through September 2017, 189 time observations in total. In order to make

the estimation manageable, I give my DMA forecast a certain “benefit of hindsight”: for

each forecast horizon, I pre-select a set of best performing predictors based on the so-called

“hard thresholding” selection procedure (Ng (2013)). According to this method, I run 97

predictive regressions on the full sample with monthly inflation as the dependent variable and

one variable at a time from the list of predictors as a regressor, in addition to an intercept.

I then rank all predictors according to the absolute value of their t-statistic in a descending

order. For two different forecast horizons h = 1, 2, . . . , 6, the respective rankings need not

coincide. I then pick 19 top predictors based on the absolute value of t-statistic for each h

add the contemporaneous and lagged inflation yt−1 to it and consider only K = 219, each

containing an intercept, contemporaneous inflation yt, and up to 19 other predictors, the

dependent variable being yt+h. For this set of models, I then do a pseudo out-of-sample

forecasting evaluation. The whole exercise is by no means purely pseudo out-of-sample

forecasting since, as I already mentioned, the pre-selection of 19 out of 97 predictors is done

on the full sample. If it turns out that, even with the benefit of hindsight, DMA does not

yield considerable improvements over simpler benchmarks (which appears to be true), then

this will make the case against DMA even stronger.

The design of the (post-pre-selection part of) the recursive pseudo-out-of-sample experi-

ment is standard. First 60 time observations are reserved for initial estimation of the model.

The first one-month ahead forecast is thus made for March 2007, two-month-ahead fore-

cast for April 2007, etc. The last forecast is made for September 2017. Forecast horizons

are h = 1, 2, . . . , 6 months. After an h-month-ahead forecast from date t for date t + h

9



is obtained, date t + 1 observation is added to the estimation sample, parameters of the

forecasting model in hands are updated, and forecasts for date t+ 1 + h are produced from

the perspective of date t+ 1. The procedure continues until the end of the sample period is

reached. In order to avoid complications, I seasonally adjust all series on the full sample and

do not address the “ragged edge” problem. As for the latter, it is well known that different

series are updated with different delays. Most recent readings of financial series are available

immediately whereas for data collected by national statistical agencies (Rosstat in Russia) or

survey companies, it might take up to 2 months for the data to get prepared for publication.

To make things simple, I pretend that February 2007 readings of all predictors are available

when I am about to make a one-month-ahead forecast for March 2007, although, in reality,

a February update of Rosstat data is released only about March 23. Seasonal adjustment

on the full sample and ignorance of the “ragged edge” problem are thus another “benefit of

hindsight” granted to my DMA forecast. Last but perhaps not least, my data set contains

revised macro series that are different from a historical real-time data.

2.3 Alternative forecasting models

Below is the complete list of models that I employ in this study. In addition to DMA/DMS,

it also includes benchmark forecasts against which I compare the out-of-sample forecast

performance of DMA/DMS.

Dynamic Model Averaging (DMA). Following the literature, I set α = 0.99 and κ = 0.96

whereas λ takes its values on a grid (0.90, 0, 01, . . . , 1.00).

Dynamic Model Selection (DMS). This is the same as DMA except that, instead of

averaging over all models, only one model – with the highest posterior likelihood – is chosen

for a forecast. The parametrization is similar to that of DMA.

Bayesian Model Averaging (BMA). DMA can be viewed as an extension of BMA. Similar

to DMA, BMA assumes that the there is uncertainty with regard to the model that gen-

erates data and therefore considers several candidate models. Unlike DMA, though, BMA

10



postulates that the identity of the data generating process is fixed but unknown and that

model parameters do not change over times. BMA can be viewed as a special case of DMA

with α = 1, κ = 1, and λ = 1.

Bayesian Model Selection. Similar to BMA except that, instead of averaging over all

models, only one model – with the highest posterior likelihood – is chosen for a forecast.

The parametrization is similar to that of BMA.

Unobserved Components – Stochastic Volatility Model (UC-SV). This model gained a

good reputation for forecasting inflation in the U.S. (Stock and Watson (2007)). It states

that the inflation consists of persistent and transitory components:

yt = τt + ηt

τt = τt−1 + εt

where ηt and εt are two independent i.i.d. Gaussian processes with time-varying covariance

matrices, respectively, Qt and Rt where

log(Qt) = log(Qt−1) + ut

log(Rt) = log(Rt−1) + vt

with ut and vt being two independent i.i.d. Gaussian processes. The UC-SV forecast is

Etyt+h = Etτt.

AR(2). Bayesian autoregression of order 2.

TVP-AR(2). Time-varying autoregression of order 2.

DMA-AR(2). This is a special case of the DMA model where only two lags of inflation

are available as predictors.

TVP-KS. This is a “kitchen sink” regression that contains all predictors from the list

with parameters allowed to change over time.
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3 Data

In this study I employ monthly data covering the period from January 2002 through Septem-

ber 2017. The variable to be forecast is consumer price inflation. There are 97 exogenous

predictors (as labeled in Koop and Korobilis (2012) – in the sense that neither of them is

a lag of the variable to be forecast) that are listed and described in Table 1. As additional

predictors, I also include a time-varying intercept and two lags of inflation. An intercept

and two lags of inflation are set to be included in each individual model within DMA.

[TABLE 1 ABOUT HERE]

The macroeconomic variables that I consider as potential predictors are

• domestic prices of goods and services: PPI, cargo tariffs, etc.;

• money and credit: monetary aggregates and Bank of Russia’s international reserves,

credit to individuals and firms, etc.;

• labor market indicators: unemployment rate, number of employed;

• real economic activity indicators: retail sales, retail services, wholesale sales, invest-

ment, real disposable income, real wages, production of new houses, cargo shipments,

etc.;

• financial market indicators: real and nominal exchange rates, stock market index,

interest rates, etc.;

• survey indicators: various versions (composite, manufacturing, services, etc.) of the

Purchase Management Institute Index (PMI) produced by Markit, a London-based

consultancy firm; Russian Economic Barometer (REB) industry survey: current and

anticipated prices for output and inputs, planned purchases of equipment, etc;

• commodity market indicators: international prices of oil, aluminum, wheat, etc.
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• indicators of economic activity in systemic economies such as the U.S. and Euro area.

The rationale behind considering non-consumer prices as predictors is straightforward.

Producer prices tend to be more flexible (or less sticky) empirically. They respond faster

to macroeconomic shocks than consumer prices and can therefore, in theory at least, serve

as a leading indicator with respect to the latter. A rise in transportation costs leads to an

increase in all consumer prices, perhaps, with some delay. Lagged CPI inflation predicts well

future CPI inflation, empirically. Furthermore, such a forecast, which is consistent with CPI

inflation following a random walk, is very difficult to outperform with a more sophisticated

model for the U.S. and other advanced economies (Atkeson and Ohanian (2001); Stock and

Watson (2007); Faust and Wright (2013)). Activity variables convey information about

the state of aggregate demand. Unusually strong growth in economic activity may signal

about the ongoing rise in production costs and the resulting accumulation of inflationary

pressures on prices. Exchange rates are potentially informative because of the incomplete and

gradual exchange rate pass-through of their changes into retail prices of imported consumer

goods, which is documented empirically (Burstein and Gopinath (2014)). Furthermore, along

with other asset prices, exchange rates are essentially forward-looking variables that should

respond to shifts in expected time path of future inflation and an anticipated response to it

from monetary policy.

All variables except CPI inflation and financial market indicators – interest rates, stock

market index, and exchange rates – were seasonally adjusted using the U.S. Bureau of

Census X-13-ARIMA-SEATS seasonal filter as implemented in the R package seasonal

(http://www.seasonal.website). The CPI inflation series was seasonally adjusted using

the methodology adopted in the Bank of Russia (Sapova et al. (2018)). As it was already

mentioned, seasonal adjustment was done on the full sample.

All predictors containing a unit root – quantities and prices in levels – were transformed

to approximately stationary by log-differencing.
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4 Findings

To evaluate the performance of forecasts, I employ two standard metrics: root mean squared

forecast error (RMSFE) and mean absolute foecast error (MAFE). Tables 2 to 3 report

RMSFE and MAFE for DMA/DMS forecasts and competitors.

[TABLE 2 ABOUT HERE]

Inspection of Table 2 suggests that the quality of DMA/DMS is not superior to benchmark

forecasts. These two model outperform the rivals only at horizon three months with RMSFE

equal to 5.1 percentage points (p.p.). For the forecast horizon h = 1 month, the best

performer is the Bayesian Model Averaging (BMA) with RMSFE = 3.5 p.p. The precision

of the DMA forecast is almost as good as that of BMA with RMSFE = 3.6 p.p. Surprisingly,

for h = 2, the best forecast is delivered by the Time-Varying Parameter Kitchen Sink model

where all predictors from the list are involved. This is unusual since, generally, kitchen

sink regressions tend to produce inferior forecast due to a large number of parameters to be

estimated. As in the previous case, the DMA/DMS forecast is roughly at par with the top

performer yielding RMSFE equal to 4.7 and 4.8 p.p., respectively, against 4.6 of TVP-KS.

For h = 4, 5, 6, the best forecast is generated by DMA-AR(2), which is lagging behind

DFM/DMS for h = 1, 2, 3. Its RMSFE is steadily 5.3 p.p. against 5.4 p.p. of DMA and 5.7

to 6.0 p.p. of DMS. Overall, the DMA/DMS does not demonstrate a systematic advantage

over other methods. Even for h = 3 where it beats its rivals, its advantage is marginal

– just 0.3 p.p. relative to the closest follower. It is worth recalling that, in this exercise,

DMA/DMS is given an important benefit of hindsight: for each h, the set of predictors

involved are pre-selected on the full sample based on the hard thresholding method (Ng

(2013)). Overall, one has to admit that the precision of DMA/DMS as well as their rivals

is quite poor in absolute terms: the width of a 67% forecast interval is about 7 to 11 p.p.,

depending on the forecast horizon, which is far from satisfactory for practical purposes.

[TABLE 3] ABOUT HERE
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Based on the MAFE metrics, the rankings almost do not change. DMA dominates the

alternatives only for the forecast horizon h = 3. TVP-AR(2) is the best performer for

h = 1 month, TVP-KS for h = 2 months, and DMA-AR(2) for h = 4, 5, 6 months. Again,

DMA/DMS is almost at par with the winner for each forecast horizon with differences in

MAFE being marginal.

Tables 4 to 9 and Figures 1 to 6 summarize findings related to the informativeness of

each individual pre-selected predictor.

[TABLE 4] AND FIGURE 1 ABOUT HERE

For each pre-selected predictor, Tables 4 to 9 report the following statistics: (i) the

sample mean of the coefficient on this predictor, (ii) the standard deviation of the coefficient,

(iii) the sample mean of the posterior probability of the inclusion of this predictor to the

data generating process, and (iv) the sample standard deviation of the inclusion probability.

Depending on the forecast horizon, 3 to 9 pre-selected predictors have sample mean posterior

inclusion probability of 0.25 or above.

As shown in Table 4, for h = 1 month, the most informative predictors are nominal

effective exchange rate (f10), the output-to-input price ratio from the REB industrial survey

(s36), the growth rate in credit to non-financial enterprises with maturity up to 1 year (f6),

and the international price of wheat (f21). According to Figure 1, the informativeness of the

top four predictors was not uniform over the sample period. At the beginning of the sample

period, the inclusion probability for each of them was close to zero. The inclusion probability

for the credit growth features a spike around 2010 and then goes below 0.30 quite fast whereas

the three other predictors gain importance with the inclusion probability remaining almost

about 0.9 for the nominal effective exchange rate after 2009, between 0.6-0.9 for the price

of wheat starting from 2011, and in the range between 0.3-0.6 for the output-to-input price

ratio in the industry after mid-2013.

[TABLE 5] AND FIGURE 2 ABOUT HERE
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As it is shown on Table 5, for h = 2, the top predictors are the output-to-input price

ratio (s36) and the anticipated growth rate of wages (s41) from the REB industrial survey

and also the credit growth to non-financial enterprises (f6 and f7). According to Figure 2,

the posterior probability of inclusion for loans, f6 and f7, tends to be high, 0.4 to 0.6, in the

middle of the sample and declines toward the end of the sample. The inclusion probability

of the two survey indicators, s36 and s41 instead grows over time reaching one in the case

of the output-to-input price ratio (s36).

[TABLE 6] AND FIGURE 3 ABOUT HERE

Table 6 and Figure 3 summarize findings for h = 3. The most informative predictors are

loans to individuals with maturity beyond one year (f9), overall loans to individuals (w4),

monetary aggregate M0 (f13), and nominal wages (r24). The posterior inclusion probability

for the two loan variables is moderate, below 0.4, between 2007 and 2015, but reaches one

very fast afterwards. The predictive power of M0 and nominal wages is rather high, 0.6-0.7

and 0.5-0.6, respectively, before 2011 and then gradually declines.

[TABLE 7] AND FIGURE 4 ABOUT HERE

At the horizon h = 4 months, as Table 7 and Figure 4 illustrate, the most valuable

predictors appear to be loans to non-financial enterprises and individuals with maturity

longer than one year (f7 and f9, respectively), overall loans to individuals (w4), and expected

wage inflation in manufacturing (s41). The posterior inclusion probability behaves quite

unevenly for the three loan variables featuring spikes and abrupt declines. The expected

growth of wages being uninformative before 2010 steadily gains predictive power afterwards:

its posterior inclusion probability fluctuates between 0.5-0.9 on the second half of the sample

period.

[TABLE 8] AND FIGURE 5 ABOUT HERE
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Out-of-sample forecasting results for h = 5 are reported in Table 8 and Figure 5. The top

predictors are loans to non-financial enterprises with maturity up to one year (f6), monetary

aggregate M0 (f13), nominal wages (r24), and financial health of firms in manufacturing

(s45). The predictive content of the loans and nominal wages decreases over time, with the

inclusion probability declining from 0.4 at the beginning of the sample to 0.2 toward the end

of the sample. M0 appears to be highly informative only occasionally, in 2015-2016, when its

posterior inclusion probability experiences a spike to 0.6-0.7 and then drops to 0.3-0.4. The

forecasting value of nominal wages also proved to be temporary: the inclusion probability is

close to zero at the beginning of the sample period, it grows rapidly after 2010 reaching 0.6

in 2012 and then starts a steady descend approaching 0.1 at the end of the sample.

[TABLE 9] AND FIGURE 6 ABOUT HERE

Finally, Table 9 and Figure 6 contain forecast evaluation results for the longest forecast

horizon we consider, h = 6 months. The leading predictors are nominal and real wages

(r24 and r25), PMI index of input prices in services (s27) and expected purchases of equip-

ment from REB industrial survey (s44). The posterior inclusion probability of wages wildly

fluctuates over time in the range between 0.2 to 0.5. The PMI index remained almost un-

informative until 2015 when its inclusion probability grew rapidly from 0.1 to almost 1.0

within a couple of months and then declined gradually to 0.6 during 2017.

To summarize, two groups of predictors tend to receive high posterior weights rather

frequently. The first group is loans to non-financial firms and individuals. For all values of

the forecast horizon, at least one member of this group is among four top performing pre-

dictors. Second, wages, either actual or anticipated, are among most informative predictors

for forecast horizon of two months and longer. Occasional top predictors are the following.

Monetary aggregate M0 appears to be helpful in forecasting inflation 3 and 5 months ahead.

The output-to-input price ratio in manufacturing from the REB industrial survey is among

best performers at horizons one and two months. International price of wheat and nomi-

nal effective exchange rate demonstrate a high predictive content in forecasting one month
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ahead. The latter might reflect a pass-through of changes in the ruble exchange rate into

retail prices of imported goods although, as documented in the literature, the exchange rate

pass-through effect is more pronounced at horizons longer than one month (Burstein and

Gopinath (2014)). Finally, financial health of firms in manufacturing is a highly informa-

tive predictor at the horizon of 5 months whereas the PMI index of input prices in services

along with expected purchases of equipment from REB industrial survey at the horizon of 6

months.

[TABLE 10 ABOUT HERE

Table 10 presents a decomposition of the variance of the forecast error into four compo-

nents (Dangl and Halling (2012)). The first component, labeled as “Observations” is related

to the variability of data. The second, “Coefficients” arises because the parameters of the

model are estimated with error. The third component, labeled as “Model”, accounts for

the uncertainty about data generating process. The final component, “Time-varying pa-

rameters” reflects time variability of the coefficients in DMA. The variance decomposition is

reported separately for DMA and BMA for six values of the forecast horizon. The inspection

of Table 10 suggests that the variability of the data-generating process is an important factor

of forecast errors, accounting for 10 to 17 percent of the forecast error variance. For BMA

the importance of model uncertainty is much lower with the contribution not exceeding 4

percent. This is by construction though because, unlike DMA, this method assumes that

the identity of the individual model that generates data is fixed but unknown. DMA, on the

contrary, explicitly allows different models to generate data at different times with random

switches among them. BMA also assumes that the parameters of the model are fixed, and

therefore the last component of the variance decomposition, “Time-varying parameters,” is

always zero. For a similar reason, the contribution of estimation error for coefficient to the

forecast error variance is much smaller for BMA than for DMA.
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5 Conclusion

This paper applies the Dynamic Model Averaging method to forecasting monthly CPI in-

flation in Russia out of sample. Unlike superior performance of DMA documented in other

studies, e.g., in Koop and Korobilis (2012) for the U.S. inflation, this method does not yield

forecasts that would systematically beat simpler benchmarks in the case of Russia. Two

groups of predictors feature the highest average values of the posterior inclusion probability.

These are, first, loans to non-financial firms and individuals and, second, actual wages or an-

ticipated wages from a survey. The former are likely to reflect inflation pressures originating

from the aggregate demand whereas the latter are related to the cost of production. Among

best performers, there is no single variable that remains evenly informative over the full

sample period 2007-2018. A common pattern is that the posterior inclusion of a predictor

is high over one subperiod and moderate to low over the rest of the sample. The forecast

error variance decomposition suggests that the time variation in the identity of a model that

generates data is a non-negligible source of forecast uncertainty.
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Tables

Table 1: Description of predictors

Notation Description Source

f1 Interest rate on short-term ruble-denominated loans to individuals BoR

f2 Interest rate on long-term ruble-denominated loans to individuals BoR

f3 Interest rate on short-term ruble-denominated loans to non-financial

enterprises

BoR

f4 Interest rate on long-term ruble-denominated loans to non-financial

enterprises

BoR

f5 Interest rate on overnight interbank loans BoR

f6 Loans to non-financial enterprises up to 1 year, % MoM BoR

f7 Loans to non-financial enterprises beyond 1 year, % MoM BoR

f8 Loans to individuals up to 1 year, % MoM BoR

f9 Loans to individuals beyond 1 year, % MoM BoR

f10 Nominal effective exchange rate, % MoM BoR

f11 Real effective exchange rate, % MoM BoR

f12 Monetary aggregate M2, % MoM BoR

f13 Monetary aggregate M0, % MoM BoR

f14 Bank of Russia’s international reserves BoR

f15 Interest rate on short-term deposits of individuals BoR

f16 Interest rate on short-term deposits of non-financial enterprises BoR

f17 Interest rate on long-term deposits of individuals BoR

f18 Interest rate on long-term deposits of non-financial enterprises BoR

f19 Moscow Exchange Stock Market Index, % MoM MoEx

f20 International price of oil, % MoM Bloomberg

f21 International price of wheat, % MoM Bloomberg

f22 International price of natural gas, % MoM Bloomberg

f23 International price of aluminum, % MoM Bloomberg

f24 International price of nickel, % MoM Bloomberg

f25 U.S. industrial production, % MoM Bloomberg

f26 E.U. total orders in manufacturing Bloomberg

f27 European Commission Manufacturing Confidence Index Bloomberg

f28 U.S. ISM Manufacturing PMI SA Bloomberg

f29 Industrial production in euro zone Bloomberg

f30 Investment goods price deflator Bloomberg
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r1 Overall exports Rosstat

r2 Exports to CIS Rosstat

r3 Exports outside CIS Rosstat

r4 OKVED industrial production index Rosstat

r5 Industrial Production: Mining and Quarrying (NSA, 2005=100) Rosstat

r6 Industrial Production: Manufacturing (NSA, 2005=100) Rosstat

r7 Industrial Production: Electricity, Gas, and Water Supply (NSA,

2005=100)

Rosstat

r8 Industrial Production: Metallurgical Production and Finished Met-

alware (NSA, 2005=100)

Rosstat

r9 Industrial Production: Pulp, Paper, Publishing, and Printing (NSA,

2005=100)

Rosstat

r10 Industrial Production: Chemicals (NSA, 2005=100) Rosstat

r11 Industrial Production: Coke and Petroleum Products (NSA,

2005=100)

Rosstat

r12 Industrial Production: Electrical and Optical Equipment (NSA,

2005=100)

Rosstat

r13 Industrial Production: Food, Beverages, and Tobacco (NSA,

2005=100)

Rosstat

r14 Industrial Production: Leather and Leather Products (NSA,

2005=100)

Rosstat

r15 Industrial Production: Other Nonmetallic Mineral Products (NSA,

2005=100)

Rosstat

r16 Industrial Production: Manufacture of Textiles (NSA, 2005=100) Rosstat

r17 Industrial Production: Rubber and Plastic Products (NSA,

2005=100)

Rosstat

r18 Industrial Production: Transport Equipment (NSA, 2005=100) Rosstat

r19 Industrial Production: Wood and Wood Products (NSA, 2005=100) Rosstat

r20 Industrial Production: Machinery and Equipment n.e.c. (NSA,

2005=100)

Rosstat

r21 Output in Agriculture (NSA, % MoM) Rosstat

r22 Output in Constructure Rosstat

r23 Output of dwellings, % MoM Rosstat

r24 Nominal wages Rosstat

r25 Real wages Rosstat

r26 Real Disposable Income (NSA, % MoM) Rosstat
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r27 Real retirement benefits paid Rosstat

r28 Retail trade Rosstat

r29 Retail trade: food, beverages, and tobacco Rosstat

r30 Retail trade: non-food items Rosstat

r31 Retail services Rosstat

r32 Cargo shipments % MoM Rosstat

r33 Cargo shipments by railroad Rosstat

r34 Total Output – 5 Basic Indicators (NSA, % MoM) Rosstat

r35 Unemployment rate, % Rosstat

r36 Number of employed, % MoM Rosstat

ro4 Index of industrial production Rosstat

ro5 Industrial production: Mining and quarrying Rosstat

ro6 Industrial production: manufacturing Rosstat

ro7 Industrial production: supply of electric power, natural gas, and

steam; air conditioning

Rosstat

ro8 Industrial production: supply of water; sewage; waste disposal and

recycling

Rosstat

ro9 Metallurgical output Rosstat

ro10 Output of finished metal items except machines and equipment Rosstat

ro11 Output of paper products Rosstat

ro12 Output of publishing products Rosstat

ro13 Output of chemicals Rosstat

ro14 Output of coal and petrochemicals Rosstat

ro15 Output of electrical equipment Rosstat

ro16 Output of food Rosstat

ro17 Output of beverages Rosstat

ro18 Output of tobacco products Rosstat

ro19 Output of leather and leather products Rosstat

ro20 Output of other mineral products Rosstat

ro21 Output of textile products Rosstat

ro22 Output of clothing Rosstat

ro23 Output of rubber and plastic products Rosstat

ro24 Output of means of transportation Rosstat

ro25 Output of other transportation equipment Rosstat

ro26 Output of timber and wood products Rosstat

ro27 Output of other machines and equipment Rosstat
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s1 Index of business sentiment: Mining and quarrying Rosstat

s2 Index of business sentiment: Manufacturing Rosstat

s3 Index of business sentiment: Supply of electric power, natural gas,

and water

Rosstat

s4 PMI: Composite – Output, SA Markit

s5 PMI: Composite – New orders, SA Markit

s6 PMI: Composite – Input prices, SA Markit

s7 PMI: Composite – Output prices, SA Markit

s8 PMI: Composite – Employments, SA Markit

s9 PMI: Composite – Work backlog, SA Markit

s10 PMI: Manufacturing, SA Markit

s11 PMI: Manufacturing – Output, SA Markit

s12 PMI: Manufacturing – New orders, SA Markit

s13 PMI: Manufacturing – New export orders, SA Markit

s14 PMI: Manufacturing – Finished goods, SA Markit

s15 PMI: Manufacturing – Employment, SA Markit

s16 PMI: Manufacturing – Stocks of purchase, SA Markit

s17 PMI: Manufacturing – Quantity of purchase, SA Markit

s18 PMI: Manufacturing – Input prices, SA Markit

s19 PMI: Manufacturing – Output prices, SA Markit

s20 PMI: Manufacturing – Delivery times, SA Markit

s21 PMI: Manufacturing – Work backlogs, SA Markit

s22 PMI: Services – Business activity, SA Markit

s23 PMI: Services – New business, SA Markit

s24 PMI: Services – Outstanding business, SA Markit

s25 PMI: Services – Employment, SA Markit

s26 PMI: Services – Prices charged, SA Markit

s27 PMI: Services – Input prices, SA Markit

s28 REB industry survey: Indebtness, anticipated REB

s29 REB industry survey: Output prices REB

s30 REB industry survey: Input prices REB

s31 REB industry survey: Wages REB

s32 REB industry survey: Employment REB

s33 REB industry survey: Output REB

s34 REB industry survey: Orders REB

s35 REB industry survey: Stock of final output REB
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s36 REB industry survey: Output-to-input price ratio REB

s37 REB industry survey: Purchases of new equipment REB

s38 PMI: Services – Business expectations Markit

s39 REB industry survey: Output prices, anticipated REB

s40 REB industry survey: Input prices, anticipated REB

s41 REB industry survey: Wages, anticipated REB

s42 REB industry survey: Employment, anticipated REB

s43 REB industry survey: Output, anticipated REB

s44 REB industry survey: Purchases of equipment, anticipated REB

s45 REB industry survey: Financial health, anticipated REB

s46 REB industry survey: Stock of final output, anticipated REB

s47 REB industry survey: Capacity utilization rate (100=normal) REB

s48 REB industry survey: Labor utilization rate (100=normal) REB

s49 REB industry survey: Stock of final output (100=normal) REB

s50 REB industry survey: Orders (100=normal) REB

s51 REB industry survey: Fraction of enterprises in good financial health,

%

REB

w1 Imports Rosstat

w2 Imports from CIS Rosstat

w3 Imports from outside of CIS Rosstat

w4 Ruble-denominated loans to households, % MoM BoR

w5 Harmonized index of industrial production BoR
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Table 2: Pseudo-out-of-sample performance of
DMA in comparison with benchmark forecasts
as measured by RMSFE

Model Horizon, months
1 2 3 4 5 6

DMA 3.6 4.7 5.1 5.4 5.4 5.4
DMS 3.8 4.8 5.1 5.7 5.9 6.0
BMA 3.5 5.1 5.6 5.6 5.7 5.7
BMS 3.6 5.2 5.7 5.6 5.8 5.8
UC-SV 5.6 6.4 6.7 6.9 6.9 6.8
AR(2) 3.8 5.3 5.7 5.8 5.8 5.8
TVP-AR(2) 4.0 5.3 5.6 5.6 5.6 5.8
DMA-AR(2) 4.0 5.6 5.4 5.3 5.3 5.3
TVP-KS 3.8 4.6 6.0 5.6 6.0 5.4

Notes: Entries are values of the root mean
squared forecast error (RMSFE) obtained through
the pseudo out-of-sample forecasting procedure
and evaluated on the sample 2002m1 – 2017m9.
60 monthly observations are used for an ini-
tial forecast. DMA – Dynamic Model Av-
eraging; DMS – Dynamic Model Sselection;
BMA – Bayesian Model Averaging; BMS –
Bayesian Model Selection; UC-SV – Unobserved
Components-Stochastic Volatility Model; AR(2) –
Bayesian autoregression of order 2; TVP-AR(2)
– Bayesian autoregression of order 2 with time-
varying parameters; DMA-AR(2) – DMA on con-
temporaneous inflation and its first lag; TVP-KS –
Kitchen Sink model with time-varying parameters.
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Table 3: Pseudo-out-of-sample performance of
DMA in comparison with benchmark forecasts
as measured by MAFE

Model Horizon, months
1 2 3 4 5 6

DMA 2.7 3.5 3.5 3.9 4.0 3.8
DMS 2.8 3.5 3.7 4.0 4.3 4.2
BMA 2.7 3.6 3.8 3.8 3.9 3.8
BMS 2.8 3.7 4.0 3.8 4.0 3.9
UC-SV 3.6 4.0 4.1 4.2 4.3 4.5
AR(2) 2.7 3.8 3.9 4.0 4.0 4.1
TVP-AR(2) 2.6 3.7 3.8 3.7 3.8 4.0
DMA-AR(2) 2.6 3.8 3.8 3.7 3.7 3.7
TVP-KS 2.8 3.4 4.1 4.2 4.3 4.0

Notes: Entries are values of the mean abso-
lute forecast error (MAFE) obtained through
the pseudo out-of-sample forecasting procedure
and evaluated on the sample 2002m1 – 2017m9.
60 monthly observations are used for an ini-
tial forecast. DMA – Dynamic Model Av-
eraging; DMS – Dynamic Model Sselection;
BMA – Bayesian Model Averaging; BMS –
Bayesian Model Selection; UC-SV – Unobserved
Components-Stochastic Volatility Model; AR(2) –
Bayesian autoregression of order 2; TVP-AR(2)
– Bayesian autoregression of order 2 with time-
varying parameters; DMA-AR(2) – DMA on con-
temporaneous inflation and its first lag; TVP-KS –
Kitchen Sink model with time-varying parameters.
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Table 4: One-month-ahead DMA forecast

Predictor E[θt] Std.Dev.[θt] E[P(θt)] Std.Dev.[P(θt)]

Intercept 3.11 1.28 1.00 0.00
infl 0.47 0.09 1.00 0.00
infl(-1) -0.03 0.04 0.19 0.13
s26 0.00 0.01 0.15 0.12
s46 0.00 0.00 0.12 0.09
s36 -0.01 0.00 0.25 0.19
s7 0.00 0.00 0.13 0.06
s39 0.00 0.00 0.13 0.07
s41 0.00 0.00 0.14 0.09
s27 0.00 0.00 0.13 0.05
f10 -3.77 1.45 0.81 0.20
f17 0.00 0.00 0.15 0.07
s45 0.00 0.00 0.08 0.06
f21 0.51 0.34 0.58 0.26
s6 0.00 0.00 0.13 0.10
f6 0.24 0.24 0.26 0.05
s43 0.00 0.00 0.08 0.03
s18 0.00 0.00 0.15 0.11
s44 0.00 0.00 0.07 0.05
s40 0.00 0.00 0.08 0.03
f18 0.00 0.01 0.17 0.09

Notes: The dependent variable is a monthly rate of CPI infla-
tion one month ahead, infl(+1). Each individual model is bound
to contain an intercept and contemporaneous inflation. E[θt]
is sample mean of the estimated coefficient of a regressor, and
Std.Dev.[θt] is its standard deviation. E[P(θt)] is sample mean
inclusion probability for a regressor, and Std.Dev.[P(θt)] is its
standard deviation. See Table 1 for a description of predictors.
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Table 5: Two-month-ahead DMA forecast

Predictor E[θt] Std.Dev.[θt] E[P(θt)] Std.Dev.[P(θt)]

Intercept 0.62 3.02 1.00 0.00
infl 0.00 0.26 1.00 0.00
infl(-1) 0.01 0.01 0.09 0.04
s46 0.00 0.00 0.05 0.02
s41 0.01 0.01 0.42 0.27
s45 0.00 0.00 0.09 0.05
s43 0.00 0.00 0.11 0.08
s44 0.01 0.01 0.20 0.30
f15 0.00 0.02 0.14 0.05
s39 0.00 0.00 0.09 0.08
s40 0.00 0.00 0.05 0.01
s36 -0.03 0.04 0.36 0.40
s27 -0.01 0.01 0.22 0.15
f1 0.00 0.01 0.09 0.06
r21 -0.06 0.15 0.12 0.03
s3 0.00 0.00 0.09 0.04
f6 0.49 0.67 0.23 0.07
s6 0.01 0.02 0.16 0.17
f7 0.36 2.18 0.29 0.09
s26 0.00 0.01 0.15 0.08
s25 0.00 0.00 0.10 0.06

Notes: The dependent variable is a monthly rate of CPI infla-
tion two months ahead, infl(+2). Each individual model is bound
to contain an intercept and contemporaneous inflation. E[θt]
is sample mean of the estimated coefficient of a regressor, and
Std.Dev.[θt] is its standard deviation. E[P(θt)] is sample mean
inclusion probability for a regressor, and Std.Dev.[P(θt)] is its
standard deviation. See Table 1 for a description of predictors.
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Table 6: Three-month-ahead DMA forecast

Predictor E[θt] Std.Dev.[θt] E[P(θt)] Std.Dev.[P(θt)]

Intercept 10.61 11.63 1.00 0.00
infl 0.10 0.12 1.00 0.00
infl(-1) 0.03 0.03 0.17 0.11
s40 0.00 0.00 0.05 0.02
s41 0.01 0.01 0.30 0.30
s44 0.00 0.00 0.06 0.04
s43 0.00 0.00 0.06 0.03
s39 0.00 0.00 0.15 0.15
s46 0.00 0.00 0.04 0.01
s3 0.00 0.01 0.07 0.03
f6 0.32 0.47 0.20 0.11
r24 -1.60 2.11 0.31 0.18
f15 -0.01 0.07 0.27 0.22
f1 0.00 0.00 0.06 0.02
f9 -72.32 129.08 0.50 0.29
s20 0.00 0.01 0.08 0.03
w4 65.57 119.76 0.52 0.28
f7 0.27 0.33 0.20 0.07
s25 0.00 0.00 0.07 0.04
f13 -2.56 2.65 0.38 0.18
s37 0.00 0.00 0.09 0.06

Notes: The dependent variable is a monthly rate of CPI inflation
three months ahead, infl(+3). Each individual model is bound
to contain an intercept and contemporaneous inflation. E[θt]
is sample mean of the estimated coefficient of a regressor, and
Std.Dev.[θt] is its standard deviation. E[P(θt)] is sample mean in-
clusion probability for a regressor, and Std.Dev.[P(θt)] is its stan-
dard deviation. See Table 1 for a description of predictors.
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Table 7: Four-month-ahead DMA forecast

Predictor E[θt] Std.Dev.[θt] E[P(θt)] Std.Dev.[P(θt)]

Intercept 6.11 13.98 1.00 0.00
infl 0.20 0.13 1.00 0.00
infl(-1) 0.02 0.04 0.20 0.07
s20 0.00 0.01 0.08 0.06
s7 0.00 0.01 0.09 0.06
s44 0.00 0.00 0.08 0.04
s26 -0.01 0.01 0.14 0.09
s3 -0.01 0.01 0.09 0.05
s27 -0.01 0.01 0.14 0.10
f9 -8.62 20.96 0.34 0.11
s13 0.00 0.00 0.07 0.07
s41 0.02 0.02 0.50 0.32
s6 0.00 0.00 0.11 0.05
s46 0.00 0.00 0.10 0.06
s31 0.00 0.00 0.15 0.11
s35 0.00 0.00 0.06 0.04
w4 3.20 12.92 0.39 0.09
s43 0.00 0.00 0.11 0.07
f1 -0.01 0.01 0.10 0.10
f7 0.20 1.21 0.25 0.07
s40 0.00 0.00 0.10 0.07

Notes: The dependent variable is a monthly rate of CPI inflation
four months ahead, infl(+4). Each individual model is bound
to contain an intercept and contemporaneous inflation. E[θt]
is sample mean of the estimated coefficient of a regressor, and
Std.Dev.[θt] is its standard deviation. E[P(θt)] is sample mean
inclusion probability for a regressor, and Std.Dev.[P(θt)] is its
standard deviation. See Table 1 for a description of predictors.
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Table 8: Five-month-ahead DMA forecast

Predictor E[θt] Std.Dev.[θt] E[P(θt)] Std.Dev.[P(θt)]

Intercept 0.41 6.37 1.00 0.00
infl 0.15 0.21 1.00 0.00
infl(-1) 0.00 0.01 0.06 0.02
s27 -0.02 0.03 0.18 0.18
s44 0.00 0.00 0.09 0.07
r29 0.50 0.83 0.19 0.07
r2 -0.06 0.09 0.10 0.05
s6 0.00 0.01 0.12 0.07
r24 -0.90 1.99 0.26 0.07
s37 0.00 0.00 0.05 0.04
f7 -0.74 3.53 0.20 0.07
f13 2.43 6.78 0.27 0.14
s13 -0.02 0.04 0.18 0.25
s7 0.00 0.00 0.07 0.03
s46 0.00 0.00 0.17 0.13
s25 0.00 0.00 0.06 0.02
s41 0.00 0.00 0.17 0.14
s3 -0.02 0.07 0.12 0.21
s8 0.00 0.01 0.08 0.06
s45 0.00 0.01 0.24 0.17
f6 0.13 1.26 0.30 0.11

Notes: The dependent variable is a monthly rate of CPI infla-
tion five months ahead, infl(+5). Each individual model is bound
to contain an intercept and contemporaneous inflation. E[θt]
is sample mean of the estimated coefficient of a regressor, and
Std.Dev.[θt] is its standard deviation. E[P(θt)] is sample mean
inclusion probability for a regressor, and Std.Dev.[P(θt)] is its
standard deviation. See Table 1 for a description of predictors.
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Table 9: Six-month-ahead DMA forecast

Predictor E[θt] Std.Dev.[θt] E[P(θt)] Std.Dev.[P(θt)]

Intercept 0.07 9.33 1.00 0.00
infl 0.13 0.14 1.00 0.00
infl(-1) 0.00 0.03 0.07 0.03
r25 -5.29 14.27 0.35 0.07
r31 0.90 1.94 0.25 0.08
r24 7.33 15.14 0.36 0.08
r29 -0.44 1.50 0.20 0.06
s37 0.00 0.01 0.12 0.09
f13 -0.14 1.22 0.21 0.06
f24 0.02 0.08 0.10 0.02
s44 0.00 0.01 0.31 0.22
s23 0.00 0.00 0.05 0.02
f12 0.56 1.76 0.29 0.11
s25 0.00 0.01 0.13 0.08
s22 0.00 0.01 0.10 0.06
s5 0.00 0.00 0.05 0.03
s13 -0.03 0.06 0.25 0.34
s27 -0.04 0.07 0.30 0.37
f6 0.12 0.60 0.22 0.08
f7 1.20 2.00 0.28 0.07
f15 0.00 0.05 0.31 0.19

Notes: The dependent variable is a monthly rate of CPI infla-
tion six months ahead, infl(+6). Each individual model is bound
to contain an intercept and contemporaneous inflation. E[θt]
is sample mean of the estimated coefficient of a regressor, and
Std.Dev.[θt] is its standard deviation. E[P(θt)] is sample mean
inclusion probability for a regressor, and Std.Dev.[P(θt)] is its
standard deviation. See Table 1 for a description of predictors.
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Table 10: Variance contribution

Model Horizon, months
1 2 3 4 5 6

DMA
Observations 71.42 58.64 61.78 69.15 63.40 55.59
Coefficients 16.07 23.13 25.54 15.40 18.06 24.53
Model 10.67 16.02 10.57 11.02 16.07 17.29
Time-varying parameters 1.83 2.21 2.11 4.44 2.47 2.59

BMA
Observations 91.07 93.04 91.30 94.95 94.45 93.60
Coefficients 5.97 3.66 5.15 2.42 3.41 4.05
Model 2.96 3.30 3.55 2.63 2.13 2.35
Time-varying parameters 0.00 0.00 0.00 0.00 0.00 0.00

Notes: Entries are fraction of variances of the forecast error explained by
the error term in the measurement equation for inflation, uncertainty due to
imprecisely estimated coefficients, uncertainty about a model that generates
data, and time variation of parameters. Out-of-sample forecasts produced by
DMA and BMA were evaluated on the sample 2002m1 – 2017m9. 60 monthly
observations are used for an initial forecast.
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Figure 1: Inclusion probabilities of top one-month-ahead predictors: loans to non-financial
enterprises up to 1 year (f6, upper left), nominal effective exchange rate (f10, upper right),
international price of wheat (f21, lower left), and output-to-input price ratio in manufacturing
(s36, lower right)
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Figure 2: Inclusion probabilities of top two-month-ahead predictors: loans to non-financial
enterprises up to 1 year (f6, upper left), loans to non-financial enterprises beyond 1 year (f7,
upper right), output-to-input price ratio in manufacturing (s36, lower left), and expected
wage inflation in manufacturing (s41, lower right)
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Figure 3: Inclusion probabilities of top three-month-ahead predictors: loans to individuals
beyond 1 year (f9, upper left), monetary aggregate M0 (f13, upper right), nominal wage (r24,
lower left), and loans to individuals (w4, lower right)
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Figure 4: Inclusion probabilities of top four-month-ahead predictors: loans to non-financial
enterprises beyond 1 year (f7, upper left), loans to individuals beyond 1 year (f9, upper
right), expected wage inflation in manufacturing (s41, lower left), and loans to individuals
(w4, lower right)
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Figure 5: Inclusion probabilities of top five-month-ahead predictors: loans to non-financial
enterprises up to 1 year (f6, upper left), monetary aggregate M0 (f13, upper right), nominal
wage (r24, lower left), and financial health of firms in manufacturing (s45, lower right)
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Figure 6: Inclusion probabilities of top three-month-ahead predictors: nominal wage (r24,
upper left), real wage (r25, upper right), PMI input prices in services (s27, lower left), and
expected purchases of equipment in manufacturing (s44, lower right)
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