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Abstract 

In this paper, we propose a new procedure for unconditional and conditional forecasting in 

agent-based models. The proposed algorithm is based on the application of amortized neural 

networks and consists of two steps. The first step simulates artificial datasets from the model. In the 

second step, a neural network is trained to predict the future values of the variables using the history 

of observations. The main advantage of the proposed algorithm is its speed. This is due to the fact 

that, after the training procedure, it can be used to yield predictions for almost any data without 

additional simulations or the re-estimation of the neural network. 

 

JEL codes: C11, C15, C32, C45, C53, C63. 

Keywords: agent-based models, amortized simulation-based inference, Bayesian models, 

forecasting, neural networks. 
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1. Introduction 

Agent-based models (hereinafter, ABM) are gaining more and more popularity among 

economists both in the academic community and at economic institutions. As they are simulation 

based, they do not require theoretical solution and they allow the extension of various assumptions 

which are often incorporated into classical economic models, such as the 

homogeneity/representativeness of agents, their rationality, and the availability of full information 

(see Fagiolo and Roventini (2017), Haldane and Turrell (2018), and Axtell and Farmer (2022)). 

However, their flexibility is also a disadvantage. Realistic ABMs often include hundreds (see Delli 

Gatti et al. (2011)) to millions of agents (see Poledna et al. (2023)) and are represented as nonlinear 

state-space models that contain a number of latent variables which is proportional to the number of 

agents. Parameter estimation and forecasting in models of this size are computationally complex 

tasks and have not been fully studied in the literature. 

Many articles have been devoted to ABM parameter estimation (see the review in Dyer et al. 

(2022a)), and although this work is still in progress, the use of simulation-based inference 

(hereinafter, SBI, see Cranmer et al. (2021)) has allowed the achievement of some progress in this 

area. ABM forecasting remains mostly uncharted territory, however. In discussing future 

opportunities and challenges in ABM, Axtell and Farmer (2022) describe the state of the field as 

follows: 

‘Conventional macro-models are constructed in terms of aggregate variables that coincide 

with acquired data about the economy. This is convenient because the resulting data can be directly 

used to initialize these models. But ABMs are dynamical systems that model the world at the level 

of individual agents, such as households and firms. In order to run the model it is necessary to 

initialize the states of all of the individual agents in a way that is also compatible with aggregate 

measurements. Doing this properly requires complete micro-data on individuals, which is typically 

not available. 

Absent such data it becomes necessary to invent plausible states for each individual agent so 

that the aggregate states of the model match the measured aggregate data. However the individual 

states in the model also need to compatible with each other and with the inherent dynamics of the 

model. If the states are not compatible in this sense, the model will generate transient behaviors that 

will result in poor forecasts. Given that model forecasts are never perfect, this is a recurrent problem 

– as time passes the forecasts of the model inevitably deviate from the measured aggregate data, and 

the initialization process must be repeated again and again. Finding good methods for doing this is 

an open problem that must be solved if we are to use ABMs for time series forecasting.’ 
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In current practice, forecasting in ABMs is based either on initializing all states using 

microdata or their distributions and then simulating the data (see Hommes et al. (2022)), as described 

by Axtell and Farmer (2022), or by using surrogate procedures (which do not require the initialization 

of the states of all agents) based on approximating joint distributions of the last observed data and 

the future values of the variables (see Delli Gatti and Grazzini (2020)).1 The first method, as Axtell 

and Farmer (2022) note, requires knowledge of a large amount of data that is not always available to 

researchers, while the second is computationally demanding for problems with more than two 

variables and has only approximate properties in terms of convergence to the posterior distributions 

of forecasts. 

In this paper, we propose a new method for unconditional and conditional forecasting in an 

ABM that allows predictions to be made without the initialization of all hidden states. The method 

is based on the idea of meta-learning (see Finn and Levine (2019)) on simulated data2 and consists 

of two steps. In the first step, multiple artificial datasets are simulated, as in SBI. In the second step, 

an algorithm which predicts future values for a particular dataset from the history of observations is 

trained using a set of similar problems, as in meta-learning. In contrast to the previously proposed 

ones, our algorithm has the property of amortization, that is, once it is trained, it can be used for 

almost any data. Moreover, unlike forecasting on the basis of surrogate algorithms, such as by Delli 

Gatti and Grazzini (2020), the algorithm described below has good theoretical properties and should 

converge exactly to the posterior distribution of the forecast when the neural network is flexible 

enough. 

Despite the fact that the main interest for us is the application of the algorithm in the context 

of ABM, the procedure used is general enough and can be applied to a wide range of problems, so in 

Section 2, we describe the conditional and unconditional forecasting procedures in a general form, 

almost without relying on the specifics of ABM. Section 3 discusses the metrics that will be further 

used to evaluate the quality of the proposed algorithm. Section 4 is devoted to a description of the 

experimental results. In Section 5, we discuss several important issues concerning quality estimation 

and potential extensions of the algorithm. Section 6 presents the conclusion. 

 

 

                                                 

 

1 Although there are a number of articles on estimating parameters and hidden states based on particle filters (see Lux 

(2018)), we have found none that use particle filters for prediction in ABM models that are comparable in size to those 

used in practice. 
2 For examples of training predictive models on simulated data in the context of meta-learning, see Harrison et al. (2020) 

and Garnelo et al. (2018), which motivated the algorithm described in this paper. 
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2. Algorithm 

We assume that the model is specified as a Bayesian state-space model with a prior 

distribution of model parameters 𝑝(𝜃), state equations 𝑠𝑡 ~ 𝑝(𝑠|𝑠𝑡−1, 𝜃), and observation equations 

𝑦𝑡 ~ 𝑝(𝑦|𝑠𝑡, 𝜃),3 where 𝜃 is the vector of model parameters, 𝑠𝑡 is the vector of the model’s hidden 

states at time 𝑡, and 𝑦𝑡 is the vector of observed variables at time 𝑡. It is additionally assumed that it 

is possible to simulate datasets consisting of the observed variables. 

Later in this section, we describe the unconditional forecasting procedure as well as its 

modification for the case of conditional forecasting. 

 

2.1. Unconditional forecasting 

The main idea is that the prediction from the Bayesian state-space model at time 𝑡 can be 

represented as an estimation of states 𝑦𝑡+1, … , 𝑦𝑡+ℎ, which are not observable at that moment. To 

solve this problem, we modify the algorithm for estimating several characteristics of the marginal 

state distributions described by Khabibullin and Seleznev (2022). The algorithm can be represented 

as a two-step procedure. In the first stage, a set of artificial datasets of different lengths 𝑡, each of 

which consists of the history of observed variables 𝑥 = {𝑦1, … , 𝑦𝑡} and the future values of these 

variables 𝑦 = {𝑦𝑡+1, … , 𝑦𝑡+ℎ}, is generated. In the second stage, a neural network is trained to predict 

𝑦 from 𝑥. The formal description of the algorithm is presented below: 

Algorithm 1. Amortized neural network algorithm for unconditional forecasting (𝑁 is 

the number of simulations, 𝑇𝑚𝑖𝑛 is the minimum length of the time series, 𝑇𝑚𝑎𝑥 is the maximum 

length of the time series, ℎ is the maximum forecasting horizon, and 𝐿 is the loss function) 

1. Generation of artificial data 

𝑋 = {}, 𝑌 = {}   

For 𝑛 = 1, … , 𝑁: 

1.a. Sample parameters from the prior distribution 

𝜃𝑛~𝑝(𝜃) 

1.b. Sample states conditionally on the parameters 

𝑠0
𝑛 ~ 𝑝(𝑠0|𝜃𝑛) 

      𝑠𝑡
𝑛 ~ 𝑝(𝑠|𝑠𝑡−1

𝑛 , 𝜃𝑛), 𝑡 = 1, … , 𝑇𝑚𝑎𝑥 

1.c. Sample observable variables conditionally on the parameters and states 

                                                 

 

3 In an ABM, this equation can have a stochastic form, as in the case of measurement errors, which are introduced into 

the model to mitigate small differences between the modeled and observed variables, or a deterministic form, as in the 

case where the model variables are strongly related to the observed ones. 
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      𝑦𝑡
𝑛 ~ 𝑝(𝑦|𝑠𝑡

𝑛, 𝜃𝑛),  𝑡 = 1, … , 𝑇𝑚𝑎𝑥 

1.d. For 𝜏 = 𝑇𝑚𝑖𝑛, … , 𝑇𝑚𝑎𝑥 − 1, create data 

𝑥𝑛,𝜏 = {𝑦1
𝑛, … , 𝑦𝜏

𝑛} 

𝑦𝑛,𝜏 = {𝑦𝜏+1
𝑛 , … , 𝑦𝜏+min(ℎ,𝑇𝑚𝑎𝑥−𝜏) 

𝑛 }4 

and add them to the dataset  

𝑋 = 𝑋 + {𝑥𝑛,𝜏} 

𝑌 = 𝑌 + {𝑦𝑛,𝜏} 

2. Neural network training 

𝜑∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜑 ∑ 𝐿 (𝑦𝑖 , 𝑓𝜑(𝑥𝑖))

𝑥𝑖∈𝑋,𝑦𝑖∈𝑋

 

In this paper, we take the cross-entropy with a diagonal normal distribution as a loss function, 

which allows us to correctly estimate the mean and standard deviation of the forecasts, however, as 

noted by Khabibullin and Seleznev (2022), any M-estimator (see Chapter 5 in Van der Vaart (2000)) 

can be used. The architecture of the neural network is similar to the architecture for the DSGE model 

of Khabibullin and Seleznev (2022) and consists of convolutional, recurrent, and fully connected 

layers.5 The three key differences are 1) the use of one-directional recurrent blocks to avoid ‘looking 

ahead’, 2) the dimensionality of the final outputs, which in our case is equal to the dimensionality of 

𝑦, and 3) the addition of skip connection between the inputs and outputs (see He et al. (2015)). 

The proposed algorithm has the property of amortization, i.e., after training, the neural 

network can be used for any datasets without running computationally complex procedures such as 

particle filter (see Gordon et al. (1993)). Instead, the data are fed into the neural network as inputs, 

and the desired characteristics of the forecast distribution (the mean and standard deviation in our 

case) are obtained as outputs within hundredths or tenths of a second. 

 

2.2. Conditional forecasting 

The main difference between conditional and unconditional forecasting is the presence of a 

scenario. To account for the presence of a scenario in Algorithm 1, we modify feature matrix 𝑥 by 

adding scenario variables 𝑧 to it, assuming that they can be expressed in terms of the observed 

variables. In this case, the prediction algorithm is written as: 

                                                 

 

4 A subset of the variables can be chosen as 𝑦 instead of the full set of observed variables. This may be especially useful 

when the dimension of the vector of observed variables is large. 
5 Four types of one-dimensional convolutional layers with 16 filters each and lengths of 3, 5, 7, and 9, respectively, a 

two-layer GRU block with a dimension of 64, and three fully connected layers with an intermediate dimension of 100 

and ReLU activation. 
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Algorithm 2. Amortized neural network algorithm for conditional forecasting (𝑁 is the 

number of simulations, 𝑇𝑚𝑖𝑛 is the minimum length of the time series, 𝑇𝑚𝑎𝑥 is the maximum length 

of the time series, ℎ is the maximum forecasting horizon, and 𝐿 is the loss function) 

1. Generation of artificial data 

𝑋 = {}, 𝑌 = {}   

For 𝑛 = 1, … , 𝑁: 

1.a. Sample parameters from the prior distribution 

𝜃𝑛~𝑝(𝜃) 

1.b. Sample states conditionally on the parameters 

𝑠0
𝑛 ~ 𝑝(𝑠0|𝜃𝑛) 

      𝑠𝑡
𝑛 ~ 𝑝(𝑠|𝑠𝑡−1

𝑛 , 𝜃𝑛), 𝑡 = 1, … , 𝑇𝑚𝑎𝑥 

1.c. Sample observable variables conditionally on the parameters and states 

      𝑦𝑡
𝑛 ~ 𝑝(𝑦|𝑠𝑡

𝑛, 𝜃𝑛),  𝑡 = 1, … , 𝑇𝑚𝑎𝑥 

1.d. For 𝜏 = 𝑇𝑚𝑖𝑛, … , 𝑇𝑚𝑎𝑥 − 1, create data 

𝑥𝑛,𝜏 = {[𝑦1
𝑛, 𝑧1

𝑛(𝑦1
𝑛, 𝑦2

𝑛, … , 𝑦1+min(ℎ,𝑇𝑚𝑎𝑥−1) 
𝑛 )], … , [𝑦𝜏

𝑛, 𝑧𝜏
𝑛(𝑦1

𝑛, … , 𝑦𝜏
𝑛, 𝑦𝜏+1

𝑛 , … , 𝑦𝜏+min(ℎ,𝑇𝑚𝑎𝑥−𝜏) 
𝑛 )]} 

𝑦𝑛,𝜏 = {𝑦𝜏+1
𝑛 , … , 𝑦𝜏+min(ℎ,𝑇𝑚𝑎𝑥−𝜏) 

𝑛 } 

and add them to the dataset 

𝑋 = 𝑋 + {𝑥𝑛,𝜏} 

𝑌 = 𝑌 + {𝑦𝑛,𝜏} 

2. Neural network training 

𝜑∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜑 ∑ 𝐿 (𝑦𝑖 , 𝑓𝜑(𝑥𝑖))

𝑥𝑖∈𝑋,𝑦𝑖∈𝑋

 

The architecture of the neural network for Algorithm 2 is similar to the architecture of the 

neural network for Algorithm 1, except that scenario variables are added as inputs at the level of the 

recurrent layer. Note that the presence of scenarios formulated in terms of the observed variables 

allows the input of data at the level of the recurrent or convolutional layers, because it is necessary 

to know the scenarios in the past periods for the correct training of a neural network with such an 

architecture. In order to incorporate scenarios that potentially include unobserved variables (for 

example, to calculate impulse responses that depend on the history of observations) in the neural 

network architecture, they must be fed into the input of the neural network in layers after which 

knowledge of the scenarios in the other time periods is not required. For the architecture proposed in 

Section 2.1, this can be done in the fully connected layers. 
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In spite of the fact that this neural network architecture is more general in terms of the number 

of tasks to be solved, through additional experiments (see Appendix C), we find that such networks 

are often much more difficult to train and require a more flexible architecture in the fully connected 

layers. Therefore, we recommend using Algorithm 2 for models in which the scenario is based on 

the observable variables only. 

  

3. Performance metrics 

The algorithms proposed in the last section should converge exactly to the mean and standard 

deviation of the posterior distribution of forecasts with the number of simulations tending to infinity 

and with a sufficiently flexible neural network. In practice, however, the number of observations and 

the size of the neural network are large, but nevertheless finite, and the loss function contains many 

local optima. All this can lead to the trained neural networks yielding results different from the 

posterior of the forecasts,6 so checking the quality of the resulting approximations is an important 

step. In this section, we describe two metrics that we use to check the quality of neural network 

training. 

Of course, the best way to answer the question about the quality of the approximation of the 

characteristics of the posterior forecast distribution is to compare it with the characteristics of the 

posterior forecast distribution itself. Unfortunately, for most simulation models, and in particular for 

ABM, which is the focus of this paper, constructing an exact posterior distribution of forecasts is 

impossible, and approximations of it based on MCMC algorithms (see Andrieu et al. (2010)) or 

sequential Monte Carlo algorithms (SMC; see Chopin et al. (2012)) require computationally complex 

algorithms with a particle filter (see Gordon et al. (1993)) or variations of it. 

Forecast error standardization. In research on probabilistic time series forecasting,7 the forecasts 

are often tested by interval calibration or probability integral transforms. These methods cannot be 

applied directly to a case in which only the mean and the standard deviation of the forecast are 

estimated, since the probability distribution of the forecasts is not fully specified. However, it can be 

noted that, similarly to the probability integral transforms, which must match the normal distribution 

and have zero autocorrelation, the standardized forecast errors (with the mean removed and divided 

by the standard deviation) should have the same properties (zero mean and unit standard deviation), 

other than the form of distribution,8 for a well-trained model. Thus, we look at the mean and the 

                                                 

 

6 See the discussion of the quality of various simulation algorithms, including amortized neural networks, in the context 

of finding posterior distributions of parameters presented by Lueckmann et al. (2021). 
7 See Clark (2011). 
8 The distribution need not be normal. 
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standard deviation of the standardized forecast errors and the mean and the standard deviation of the 

product of standardized errors separated by 𝑘 periods to test the quality. The latter, in fact, is 

equivalent to testing for autocorrelation, but it does not require the adjustment of the asymptotic 

distribution due to the finite length of the time series. Thus, there is no worry that the distribution of 

the correlation estimates will have a mean and standard deviation different from zero and one. 

There are two points to note about this quality metric. First, the results of the test described 

above should be considered one stage of the verification of the quality of the model. Not passing it 

should serve as a signal of problems with the quality of the neural network. The reverse situation, in 

which the test is passed, is not a guarantee that the model works well. For example, if the conditional 

forecasting model is poorly trained and does not take the presence of a scenario into account in any 

way, but produces only an unconditional forecast, it will pass the test. Second, we cannot apply the 

standard formal hypothesis testing about the mean and standard deviation, since the drift of the neural 

network coefficients at non-zero learning rates (see Mandt et al. (2017)) makes a comparable 

contribution to the distribution of the mean and standard deviation estimates.9 Therefore, below, we 

look at these quantities without formal hypothesis testing. 

Comparison with the benchmark model. As mentioned above, passing the test on standardized 

forecast errors is only an indirect confirmation of the quality of the neural network, since, among 

other things, it can be passed by models that do not take all relevant information into account. To see 

how well the neural network takes historical information into account, we estimate the lower bound 

of forecast quality on a test dataset. 

Such an estimate can be made with a benchmark model. Note that after optimization, the 

neural network should have the smallest mean squared forecast error (hereinafter, MSFE) for each 

variable and for each horizon by construction of the loss function. Moreover, the mean log predictive 

scores (hereinafter, LPS) should be the largest in the class of normal distributions. These two facts 

allow us to conclude that, no matter which forecasting model we build on the test data, it should not 

outperform the neural network in terms of MSFE and LPS. 

The benchmark model should be chosen based on a balance of flexibility and training time. 

On the one hand, the more flexible the model, the tighter the lower bound will be. On the other hand, 

estimating the lower bound should take adequate time. A representative test dataset often contains 

thousands or tens of thousands of time series sets, so it is necessary to train the model hundreds of 

                                                 

 

9 It is probable that the estimates could be improved by applying ensembles of models based on several runs of the 

training procedure, or by using averaging at different iterations within the same training procedure, but this issue is 

beyond the scope of this paper. 
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thousands of times (the number of test sets multiplied by the number of periods in which forecasts 

are made) to test one forecast horizon for one variable. 

In this paper, vector autoregression (VAR) with ridge regularization is chosen as a benchmark 

model. It is computationally easy enough to estimate and allows the calculation of both conditional 

and unconditional predictions in adequate time. The VAR model in the experiments is put in as 

comfortable a setting as possible, making it more difficult to pass the test. We start predicting only 

from the 101st period to give the VAR model more information to train the coefficients (re-estimated 

recurrently on an expanding window) and also optimize the number of lags and the regularization 

parameter on the test data over the grid. 

 

4. Results of the experiments 

In this section, we show how the proposed algorithm works when making forecasts in the 

ABM. However, before moving on to the ABM, where the comparison with MCMC is time 

consuming, we show in Section 4.1 how our procedure and quality metrics behave using the toy 

example of a Bayesian AR(1) regression. Then, in Sections 4.2 and 4.3, we show the results for 

conditional and unconditional forecasts in the ABM. 

 

4.1. Proof of concept 

We use the Bayesian AR(1) model (see Appendix B.1 for details)  to test the proposed 

algorithm. We generate 1,010,000 time series (10,000 are taken as the test dataset) with a length of 

200 to estimate the model. We choose 𝑇𝑚𝑖𝑛 = 50 because we find a slight degradation in quality 

compared to MCMC for models with 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 differing by an order of magnitude. At the same 

time, time-series lengths from 50 to 200 correspond to quarterly data from 12.5 to 50 years, which is 

in line with the series lengths used by macroeconomists in practice. The final training dataset for 

each of the forecasting horizons is approximately 150,000,000 examples (~𝑁(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)) and 

1,500,000 for the test. The model is trained with the ADAM algorithm (see Kingma and Ba (2014)) 

500,000 iterations with a batch size of 100 and learning rate 𝜀𝑛: 

𝜀𝑛 = {
10−4, 𝑖𝑓 𝑛 < 3 × 105

10−5, 𝑖𝑓 𝑛 ≥ 3 × 105 

The training takes about 5 hours on an NVIDIA GeForce RTX 2070 GPU for a neural network 

implemented in PyTorch (see Paszke et al. (2019)). 

Figure 1 (see Appendix A) presents examples of the forecasts of the neural network and 

predictions using the MCMC algorithm on randomly generated data (not used in training) with 

sample lengths of 50, 100, 150, and 200 on horizons from 1 to 12. It can be seen from the figure that 
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the forecasts are well approximated by the neural network in all cases: autocorrelation is close to 

zero (upper graph), intermediate autocorrelation (two middle graphs) and high persistence (lower 

graph). 

Figures 2 and 3 show how the errors and the products of the forecast errors are distributed for 

different forecast horizons on the test data. The means and standard deviations are also shown in the 

titles of the figures. The neural network approximating the posterior distribution of the forecasts of 

the Bayesian AR(1) model passes the standardized error test, since for all distributions, the mean and 

standard deviation are close to 0 and 1. Note that the error distributions are close to normal, but as 

mentioned above, this is not a necessary condition for our verification10 in contrast to the probability 

integral transforms. 

Table 1 compares the MSFE and LPS neural network errors with respect to the AR(1) model, 

which is a data generation process for each time series. It can be observed that the neural network 

statistically significantly outperforms the AR(1) model on all forecast horizons. This may seem 

counterintuitive, but there is nothing strange in this, since the Bayesian model knows a little more 

information. In particular, it knows information about how the parameters are distributed over the 

test datasets in addition to the data generation process. 

To summarize, we can say that the neural network copes well with our toy example. The 

characteristics of the posterior distributions of the forecasts almost coincide with the characteristics 

of the forecasts based on the MCMC algorithm, which is the main measure of the quality of training. 

Moreover, this neural network easily passes the indirect quality tests, which are the main tests in our 

work with the ABM, as expected. 

 

4.2. Unconditional forecasts 

To demonstrate the properties of the proposed algorithm for the ABM, we build a simplified 

version of the model of Delli Gati et al. (2011), which contains 50 C-firms, 500 consumers, the public 

sector, and a bank (see Appendix B.2). In all examples for unconditional and conditional forecasts, 

we generate 510,000 datasets (10,000 of which are the test data) of length 300, 100 of which are 

removed as a burn-in period. This is the minimum number of simulations to prevent overfitting in a 

model with four observable variables (see below) without regularization as we have seen from the 

experiments. Of course, regularization procedures such as early stopping, L1/L2-regularization, or 

                                                 

 

10 As we have found, this is not the case for unconditional prediction in the ABM (graphs are not presented for the sake 

of space). 
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dropout11 can be used to reduce the number of simulations, but the selection of the correct 

regularization and its hyperparameters lies outside the scope of this paper. 

In the case of the ABM, contrast to AR(1), the data simulations take most of the time 

compared to the training of the neural network. We vectorize our model to speed up the simulation 

procedure. This allows us to generate 10,000 simulations simultaneously in a single notebook in 

Python. We run 5 Python notebooks in parallel, which allows us to generate 50,000 simulations in 

about 3 hours on a CPU (Intel(R) Core (TM) i7-8750H CPU @ 2.20GHz, 16GB RAM). As a result, 

the final dataset is generated in 30 hours. The neural network training for each of the three sets of 

variables described below takes about 5 hours and is run with similar hyperparameters to the 

Bayesian AR(1) model. 

We estimate the model with two, three, and four observed variables: 

𝑋2 = {10 log(1 + 𝑃) , 10𝑈} 

𝑋3 = {10 𝑙𝑜𝑔(1 + 𝑃) , 10𝑈, 10 𝑙𝑜𝑔(1 + 𝐶)} 

𝑋4 = {10 log(1 + 𝑃) , 10𝑈, 10 log(1 + 𝐶) , log(1 + 𝐿)} 

where 𝑋2, 𝑋3, and 𝑋4 are datasets of two, three, and four variables, respectively, 𝑃 is the average 

price level of the C-firms, 𝑈 is the unemployment rate, 𝐶 is the consumption level, and 𝐿 is the 

volume of loans. The price, consumption, and credit variables are transformed using a transformation 

that is close to a log transformation,12 with a modification that allows us to train the model without 

additional filtering for degenerate cases (when the values in the data are zero). The data are also 

scaled so that the standard deviations of the variables in the individual datasets are of the order of 1 

on average. 

Table 2 presents the means and standard deviations of the forecast error distributions for 

models trained on datasets of two, three, and four variables. It can be seen that, in all cases, the means 

are close to 0 and that the standard deviations are close to 1, which means that the trained neural 

networks pass the first part of the test proposed in Section 3. Deviations of a few hundredths are 

caused by a small oscillation of the coefficients at learning rates that do not tend to zero, as is 

mentioned in the description of the test. When calculating the standard deviations of the product of 

the standardized forecast errors, we truncate the sample by removing points that are greater than 30 

in absolute value (about 100 of the 1,500,000 test points). This is done because the standard 

deviations of the product of the errors are the fourth moments of the error distribution, and the 

presence of outliers can significantly affect the estimates. These outliers are associated with very 

                                                 

 

11 See Srivastava et al. (2014). 
12 Log transformation is usually applied to these variables in macroeconomic forecasting. 
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extreme single simulations for unemployment and loans. Examples of such simulations are presented 

in Figure 4. Excepting such cases, Table 3 shows that the characteristics are close to ideal and differ 

by no more than a few hundredths. 

The neural network approximating the ABM demonstrates good predictive properties 

compared to the benchmark VAR model. Table 4 presents a comparison in terms of MSFE and LPS. 

It can be seen that, for all models and forecast horizons, the neural network is not (statistically 

significantly) worse than the VAR model. Moreover, it almost always (in 212 of 216 cases) 

outperforms the benchmark at the 1% significance level. Together with the results of the previous 

test, this allows us to hope for a reasonably good approximation of the posterior of the ABM 

forecasts. Examples of forecasts on randomly generated data for the ABM with four variables are 

presented in Figure 5. 

 

4.3. Conditional forecasts 

The model of Section 4.2 is used to illustrate the properties of neural networks in an 

amortizing conditional forecast task in the ABM. We train a neural network to predict consumption 

for 12 periods, assuming that unemployment is known over the forecast horizon.13 These variables 

are strongly correlated in our model (the average absolute correlation is greater than 0.5), so 

unemployment is quite informative with respect to consumption, and the forecast should be very 

different from the unconditional forecast. This allows us to clearly show how Algorithm 2 works. 

Figure 6 presents an example of running a trained neural network on the same random data 

for consumption and unemployment as in Figure 5. It demonstrates that the results of the conditional 

forecast are much more accurate and narrower than those of the unconditional forecasts from the 

model with four variables. This serves as indirect evidence that the neural network is well-trained. 

This is also signalled by the quality metrics proposed in Section 3. Figures 7 and 8 and the values of 

the mean and standard deviation of the distributions (which are close to 0 and 1) for the forecast 

errors and their products show that the neural network passes the test on standardized forecast errors. 

As before, we estimate a VAR as the benchmark model for the second test from Section 3. 

The conditional forecasts from the VAR are constructed using Kalman smoothing (see Durbin and 

Koopman (2002)). Table 5 shows that the neural network outperforms the VAR model on all forecast 

horizons. Like the results described in the previous paragraph, this is also indirect evidence of the 

quality of the neural network. 

                                                 

 

13 The variables are transformed in the same way as in Section 4.2. 



Amortized Neural Networks for Agent-Based Model Forecasting 16 

_______________________________________________________________________________ 

 

 

5. Discussion 

In this section, we discuss issues that we consider important in the context of the future 

application and development of the algorithms described. In particular, these are questions that are 

related to 1) the estimation of the performance of the algorithms based on indirect metrics, 2) scenario 

forecasting tasks which take into account scenarios built on unobserved variables, 3) the use of an 

algorithm on microdata, and 4) working with a fixed computational budget on simulations. 

Use of indirect quality metrics. The results of the previous section allow us to conclude that the 

proposed amortized forecasting procedure based on neural networks demonstrates adequate results. 

Nevertheless, the quality estimates for both the conditional and unconditional forecasts are based on 

indirect metrics. Although this cuts off inadequate results, it cannot serve as a 100% guarantee of a 

good approximation of the posterior distribution of forecasts. The benchmark model serves only as 

a lower bound on the quality of the forecast and may not be tight enough. Verification based on 

standardized forecast errors has problems similar to the validation of Bayesian model parameters 

(see Cook et al. (2006); Talts et al. (2018)), in the sense that this test can be passed even by models 

whose distribution characteristics are far from those of the posterior distribution.14 Moreover, in the 

case of non-zero learning rates, the latter procedure is not formally strong due to the fact that it is not 

based on statistical tests. As mentioned in Section 3, the errors introduced by the oscillation of the 

coefficients are comparable to the statistical error or even exceed it. The use of indirect metrics 

creates the risk that the predictions of underfitted models (which differ from the posterior ones) will 

be accepted as true predictions from the ABM, which may affect decisions made based on these 

predictions.15 We therefore consider the improvement of forecast quality testing procedures as one 

of the most important directions for the further development of forecasting with ABMs. Among other 

things, we see great potential for testing amortized algorithms in formalizing tests on standardized 

forecast errors and building tests for the dependence of forecast errors on previous data. 

Scenario forecasting based on unobservable variables. We also believe, despite the fact that we 

fail to achieve convergence to the optimum of the algorithm for scenario analysis, which depends 

not only on the observable variables, but also on unobservable ones (see Appendix C), that future 

research will find neural network architectures and learning algorithms that are more successful and 

help solve a wider range of problems than only unconditional and conditional forecasting. 

                                                 

 

14 For example, the prior distribution can pass this test. 
15 Note that such risks are associated not only with our algorithm, but are also applicable to many other approximate 

forecasting methods in structural models. 
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Application of the algorithm to microdata. In addition to estimation on aggregate data, when 

working with ABMs in practice, it is often necessary to work with models that are fitted to historical 

microdata or their distributions (see Hommes et al. (2022)). Algorithms 1 and 2 described in Section 

3 can also be used for such problems by adding appropriate variables to the set of observables. These 

are the microdata themselves for the case of microdata,16 and sufficient statistics (if any) or a small 

set of characteristics describing the properties of the distribution in the case of distributions.17 

Fixed budget for simulations. Simulation time in AMBs can be large, and a single simulation can 

take several minutes. This can render the time required to generate the necessary amount of artificial 

data prohibitive. There are many multi-round methods in the SBI literature that work under such 

constraints (see Papamakarios and Murray (2016), Lueckmann et al. (2017), Greenberg, 

Nonnenmacher and Macke (2019)). We suggest using the idea of the rectangular truncation of the 

prior distribution of parameters from Miller et al. (2021). It can be used to extend our approach by 

focusing on simulations in regions in which the parameters are more or less consistent with the 

observed data. Despite the fact that, like other algorithms, this approach does not have the property 

of amortization, it is nevertheless locally amortized within the truncated regions. Explicit 

amortization boundaries make it possible to estimate local properties using the quality metrics 

described above. Moreover, as for other algorithms, local amortization in the parameter space allows 

us to hope that when new data (new points in the time dimension) arrive, the old simulations can be 

reused, since the posterior distribution of the parameters usually does not change much when several 

new points are added. 

 

6. Conclusion 

In this paper, we describe a forecasting algorithm for ABM models based on amortized neural 

networks, which allows for the almost instantaneous estimation of the characteristics of the posterior 

distribution of forecasts after pre-training. The experimental results for Bayesian AR(1) and 

verification based on indirect quality metrics for ABM show that the algorithm demonstrates good 

properties. We hope that our work will serve as a starting point for the development of forecasting 

procedures in ABMs based on neural networks, and also help to make forecasting in ABMs a routine 

procedure in the future. 

                                                 

 

16 Modifications to the structure of the neural network that perform aggregation operations in the first layers or that take 

the structure of the data into account more specifically, such as the relationship graph structure (see Dyer et al. (2022b)), 

may be needed to reduce the time and improve the quality. 
17 See, for example, Chang et al. (2021) for a representation of the dynamics of distributions through a set of 

characteristics in the context of functional VAR models. 
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Appendix A. Figures and tables 

 

Figure 1. Comparison of neural network and MCMC algorithm forecasts for Bayesian AR(1) 

model 
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Figure 2. Distributions of standardized forecast errors for Bayesian AR(1) model 

 

 

 

Figure 3. Distributions of products of standardized forecast errors for Bayesian AR(1) model 
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Table 1. Comparison of forecasting properties of AR(1) model and neural network 

approximating Bayesian AR(1) model (MSFE is the ratio of the mean squared errors of the 

AR(1) and the neural network; LPS is the difference in the mean log predictive scores of the 

AR(1) and the neural network) 

 

 

 

 

 

 

 

 

 

 

 

 

Significance level: *(10%), **(5%), ***(1%) 

  

Figure 4. Examples of extreme simulations of unemployment and loans in ABM (graphs show 

different simulations) 

 

 

Forecasting  

horizon 
MSFE LPS 

1 1.009*** -0.005*** 

2 1.015*** -0.008*** 

3 1.02*** -0.009*** 

4 1.025*** -0.011*** 

5 1.029*** -0.012*** 

6 1.033*** -0.013*** 

7 1.038*** -0.014*** 

8 1.041*** -0.015*** 

9 1.045*** -0.016*** 

10 1.049*** -0.016*** 

11 1.052*** -0.017*** 

12 1.055*** -0.018*** 
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Table 2. Verification of distributions of standardized forecast errors for unconditional 

forecast in ABM 

 

Forecasting  

horizon 

2 variables 3 variables 

CPI Unemployment CPI Unemployment Consumption 

mean std mean std mean std mean std mean std 

1 -0.009 1 -0.004 0.997 -0.006 0.991 0.004 1.006 0.017 1.002 

2 -0.014 1.002 -0.008 0.998 -0.013 0.992 0.005 1.004 0.013 1.001 

3 -0.017 1.003 -0.008 0.999 -0.015 0.992 0.007 1.003 0.014 1.001 

4 -0.018 1.003 -0.009 0.999 -0.017 0.992 0.008 1.004 0.014 1 

5 -0.02 1.003 -0.01 0.999 -0.018 0.992 0.008 1.003 0.016 1 

6 -0.021 1.003 -0.009 0.999 -0.019 0.993 0.007 1.005 0.015 1 

7 -0.022 1.002 -0.009 0.998 -0.02 0.992 0.007 1.006 0.016 1 

8 -0.022 1.002 -0.009 0.998 -0.02 0.993 0.006 1.004 0.016 1 

9 -0.023 1.002 -0.009 0.997 -0.021 0.993 0.006 1 0.017 1 

10 -0.024 1.002 -0.009 0.997 -0.021 0.993 0.006 0.999 0.017 1 

11 -0.024 1.001 -0.008 0.996 -0.022 0.993 0.006 0.998 0.018 1.001 

12 -0.024 1.001 -0.009 0.995 -0.023 0.993 0.005 0.996 0.017 1.001 

 

 

 

 

 

 

 

Forecasting  

horizon 

4 variables 

CPI Unemployment Consumption Loans 

mean std mean std mean std mean std 

1 0.005 0.99 -0.001 0.989 -0.006 0.997 0 0.993 

2 0 0.99 0.002 0.995 -0.006 0.998 0 0.999 

3 0 0.99 0.002 0.992 -0.007 0.998 0.002 1.001 

4 0.002 0.991 0.002 1.005 -0.007 0.997 0.001 0.996 

5 0.004 0.991 0.003 1.005 -0.008 0.997 -0.001 0.995 

6 0.004 0.991 0.004 1.002 -0.008 0.997 -0.001 0.995 

7 0.005 0.991 0.005 1.002 -0.009 0.997 -0.001 0.993 

8 0.004 0.991 0.005 1.001 -0.008 0.998 -0.002 0.995 

9 0.004 0.992 0.006 1.002 -0.009 0.998 -0.002 0.993 

10 0.004 0.992 0.006 0.999 -0.008 0.998 -0.003 0.993 

11 0.004 0.992 0.007 0.997 -0.009 0.998 -0.002 0.991 

12 0.004 0.992 0.006 0.996 -0.009 0.999 -0.003 0.991 
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Table 3. Verification of distributions of products of standardized forecast errors for 

unconditional forecast in ABM 

 

Forecasting  

horizon 

2 variables 3 variables 

CPI Unemployment CPI Unemployment Consumption 

mean std mean std mean std mean std mean std 

1 0.005 1.028 0 0.975 0.015 1.013 -0.011 0.998 -0.006 1.017 

2 0.008 1.018 0.003 0.971 0.007 1.002 -0.005 0.983 0 1.011 

3 0.007 1.016 0.002 0.971 0.004 0.997 -0.004 0.979 -0.001 1.011 

4 0.004 1.018 0.003 0.974 0.003 0.997 -0.003 0.979 -0.001 1.005 

5 0.004 1.017 0.001 0.975 0.001 0.997 -0.004 0.976 -0.004 1.006 

6 0.003 1.018 0.001 0.973 -0.001 0.998 -0.005 0.974 -0.005 1.004 

7 0.002 1.018 0 0.976 -0.003 1 -0.005 0.974 -0.005 1.003 

8 0.002 1.019 0 0.979 -0.004 1.002 -0.005 0.976 -0.006 1.004 

9 0.002 1.019 -0.001 0.982 -0.006 1.003 -0.006 0.979 -0.007 1.007 

10 0.002 1.02 -0.004 0.982 -0.008 1.004 -0.009 0.978 -0.006 1.009 

11 0.002 1.017 -0.005 0.983 -0.009 1.005 -0.01 0.979 -0.009 1.01 

12 0.002 1.016 -0.005 0.988 -0.009 1.004 -0.011 0.981 -0.008 1.009 

 

Forecasting  

horizon 

4 variables 

CPI Unemployment Consumption Loans 

mean std mean std mean std mean std 

1 0.02 1.033 0 1.015 -0.014 1.039 0.014 1.014 

2 0.016 1.013 0.004 1.012 -0.005 1.025 0.001 1.013 

3 0.009 1.007 0.001 1.009 -0.005 1.022 0 1.007 

4 0.008 1.005 0 1 -0.003 1.012 0 1 

5 0.007 1.005 -0.002 1.001 -0.005 1.012 0 1.002 

6 0.005 1.006 -0.004 0.995 -0.007 1.008 0.001 1.008 

7 0.002 1.009 -0.007 0.996 -0.008 1.008 -0.001 1.011 

8 0 1.011 -0.007 0.994 -0.008 1.007 -0.001 1.014 

9 -0.001 1.014 -0.01 1 -0.01 1.011 -0.003 1.014 

10 -0.004 1.015 -0.013 0.996 -0.009 1.013 -0.003 1.017 

11 -0.005 1.014 -0.015 0.996 -0.013 1.013 -0.006 1.02 

12 -0.006 1.014 -0.018 0.999 -0.013 1.014 -0.007 1.026 
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Table 4. Comparison of unconditional forecasting properties of VAR model and neural 

network approximating ABM (MSFE is the ratio of the mean squared errors of the VAR and 

the neural network; LPS is the difference in the mean log predictive scores of the VAR and 

the neural network) 

 

Forecasting  

horizon 

2 variables 3 variables 

CPI Unemployment CPI Unemployment Consumption 

MSFE LPS MSFE LPS MSFE LPS MSFE LPS MSFE LPS 

1 1.05*** -0.17*** 1.09*** -0.58*** 1.06*** -0.11*** 1.11*** -0.18*** 1.02** -0.11** 

2 1.08*** -0.15*** 1.11*** -0.55*** 1.08*** -0.16*** 1.13*** -0.17*** 1.03*** -0.08*** 

3 1.09*** -0.18*** 1.12*** -0.55*** 1.1*** -0.2*** 1.14*** -0.18*** 1.05*** -0.04*** 

4 1.1*** -0.21*** 1.14*** -0.57*** 1.11*** -0.23*** 1.16*** -0.19*** 1.06*** -0.05*** 

5 1.11*** -0.25*** 1.16*** -0.59*** 1.11*** -0.25*** 1.17*** -0.2*** 1.08*** -0.06*** 

6 1.11*** -0.27*** 1.17*** -0.6*** 1.11*** -0.27*** 1.18*** -0.2*** 1.09*** -0.06*** 

7 1.11*** -0.29*** 1.18*** -0.62*** 1.12*** -0.28*** 1.19*** -0.21*** 1.1*** -0.07*** 

8 1.11*** -0.31*** 1.19*** -0.64*** 1.12*** -0.28*** 1.2*** -0.22*** 1.1*** -0.07*** 

9 1.12*** -0.33*** 1.2*** -0.66*** 1.12*** -0.28*** 1.2*** -0.22*** 1.11*** -0.07*** 

10 1.12*** -0.34*** 1.2*** -0.68*** 1.13*** -0.28*** 1.2*** -0.23*** 1.11*** -0.07*** 

11 1.12*** -0.35*** 1.2*** -0.7*** 1.13*** -0.28*** 1.21*** -0.24*** 1.11*** -0.08*** 

12 1.13*** -0.37*** 1.21*** -0.7*** 1.13*** -0.28*** 1.21*** -0.24*** 1.12*** -0.08*** 

 

Forecasting  

horizon 

4 variables 

CPI Unemployment Consumption Loans 

MSFE LPS MSFE LPS MSFE LPS MSFE LPS 

1 1.07*** -0.11*** 1.09*** -0.33*** 0.980 -0.09** 1.35*** -0.96*** 

2 1.09*** -0.16*** 1.1*** -0.3*** 1.06*** -0.07*** 1.24*** -0.93*** 

3 1.12*** -0.21*** 1.12*** -0.29*** 1.08*** -0.06*** 1.25*** -1.02*** 

4 1.13*** -0.25*** 1.14*** -0.27*** 1.11*** -0.07*** 1.28*** -1.12*** 

5 1.14*** -0.27*** 1.15*** -0.26*** 1.12*** -0.07*** 1.32*** -1.2*** 

6 1.15*** -0.28*** 1.16*** -0.26*** 1.14*** -0.08*** 1.35*** -1.28*** 

7 1.16*** -0.28*** 1.17*** -0.25*** 1.16*** -0.08*** 1.39*** -1.35*** 

8 1.17*** -0.29*** 1.18*** -0.25*** 1.19*** -0.08*** 1.42*** -1.41*** 

9 1.18*** -0.29*** 1.18*** -0.25*** 1.22*** -0.09*** 1.45*** -1.47*** 

10 1.19*** -0.29*** 1.19*** -0.26*** 1.27*** -0.09*** 1.48*** -1.52*** 

11 1.2*** -0.29*** 1.19*** -0.26*** 1.28*** -0.1*** 1.5*** -1.57*** 

12 1.21*** -0.29*** 1.19*** -0.27*** 1.29*** -0.1*** 1.53*** -1.62*** 

 

Significance level: *(10%), **(5%), ***(1%) 
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Figure 5. Neural network forecasts for ABM with 4 variables 
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Table 5. Comparison of conditional forecasting properties of VAR model and neural network 

approximating ABM (MSFE is the ratio of the mean squared errors of the VAR and the 

neural network; LPS is the difference in the mean log predictive scores of the VAR and the 

neural network) 

 

 

 

 

 

 

 

 

 

 

 

 

Significance level: *(10%), **(5%), ***(1%) 

 

Figure 6. Neural network conditional forecasts for ABM 

 

 

 

 

 

 

 

 

 

Forecasting  

horizon 
MSFE LPS 

1 1.231*** -0.242*** 

2 1.276*** -0.235*** 

3 1.318*** -0.199*** 

4 1.349*** -0.216*** 

5 1.38*** -0.236*** 

6 1.379*** -0.234*** 

7 1.389*** -0.24*** 

8 1.394*** -0.247*** 

9 1.392*** -0.254*** 

10 1.405*** -0.26*** 

11 1.374*** -0.276*** 

12 1.284*** -0.215*** 
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Figure 7. Distributions of standardized forecast errors for conditional forecast from ABM 

 

 

 

Figure 8. Distributions of products of standardized forecast errors for conditional forecast 

from ABM 
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Appendix B. Models 

 

B.1. Bayesian AR(1) model 

Prior distribution:  

𝜎2~𝐼𝐺(3; 1),   𝜌~𝑁(0; 𝜎), 𝑖𝑓 0 ≤ 𝜌 < 1 

where 𝜎 is the standard deviation of shocks, 𝜌 is the autoregression coefficient, 𝐼𝐺(𝑎, 𝑏) is the inverse 

gamma distribution with parameters 𝑎 and 𝑏, and 𝑁(𝑚, 𝑠) is the normal distribution with mean 𝑚 

and standard deviation 𝑠. 

Data generation process: 

𝑦0~𝑁 (0;
𝜎

√1 − 𝜌2
) 

       𝑦𝑡 = 𝜌𝑦𝑡−1 + 𝑒𝑡,  𝑡 = 1, … , 𝑇 

          𝑒𝑡~𝑁(0; 𝜎) ,  𝑡 = 1, … , 𝑇 

where 𝑦𝑡 is the value of the time series at time 𝑡 and 𝑒𝑡 is the random shock at time 𝑡. 

 

B.2. ABM 

The model consists of C-firms, consumers (workers), a bank, and the government. The C-

firms produce goods using linear technology: 

𝑦𝑖,𝑡 = 𝛼𝐿𝑖,𝑡 

where 𝛼 is the labour productivity, 𝑦𝑖,𝑡 is the volume of goods produced by firm 𝑖 in period 𝑡, and 

𝐿𝑖,𝑡 is the amount of labour used for production. The firm takes several steps before producing goods. 

First, the firms set their prices and choose their desired output level based on rules similar to 

those proposed by Delli Gati et al. (2011): 

𝑃𝑖,𝑡
𝑙𝑜𝑤𝑒𝑟 =

𝑤

𝛼
+

𝑟𝑖−1,𝑡𝐵𝑖,𝑡−1

max(𝑦𝑖,𝑡−1, 𝛼)
 

𝑦𝑖,𝑡
∗ = max (𝑦𝑖,𝑡−1 + 𝜌𝑖,𝑡 (𝐼(𝑃𝑖,𝑡−1 > 𝑃𝑡−1)𝐼(𝛥𝑖,𝑡−1 > 0) − 𝐼(𝑃𝑖,𝑡−1 < 𝑃𝑡−1)𝐼(𝛥𝑖,𝑡−1 ≤ 0)) 𝑦𝑖,𝑡−1, 𝛼) 

𝑃𝑖,𝑡 = max (𝑃𝑖,𝑡−1 + 𝜂𝑖,𝑡 (𝐼(𝑃𝑖,𝑡−1 < 𝑃𝑡−1)𝐼(𝛥𝑖,𝑡−1 > 0) − 𝐼(𝑃𝑖,𝑡−1 > 𝑃𝑡−1)𝐼(𝛥𝑖,𝑡−1 ≤ 0)) 𝑃𝑖,𝑡−1, 𝑃𝑖,𝑡
𝑙𝑜𝑤𝑒𝑟) 

where 𝑃𝑖,𝑡
𝑙𝑜𝑤𝑒𝑟 is the minimum price of firm 𝑖 in period 𝑡, 𝑤 is the wage of workers, 𝑟𝑖−1,𝑡 is the 

average interest rate on the loans of firm 𝑖 in period 𝑡 − 1, 𝐵𝑖,𝑡−1 is the volume of loans of firm 𝑖 in 

period 𝑡 − 1, 𝑦𝑖,𝑡
∗  is the desired output of firm 𝑖 in period 𝑡, 𝑃𝑖,𝑡 is the price of the goods of firm 𝑖 in 

period 𝑡, 𝜌𝑖,𝑡 and 𝜂𝑖,𝑡 are random variables from the uniform distributions with zero lower bounds 

and upper bounds 𝜌 and 𝜂, respectively, 𝑃𝑡−1 is the arithmetic average price of goods in period 𝑡 −
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1, 𝛥𝑖,𝑡−1 is the excess demand for the products of firm 𝑖 in period 𝑡 − 1, and 𝐼 is an indicator equal 

to one if the condition is satisfied and equal to zero if it is not. 

When the prices and the desired level of output have been formed, the firms determine the 

amount of money needed to finance production. This amount is determined by the wages that must 

be paid to the workers involved in production. The number of workers the firm needs to produce the 

desired level of output is calculated by the formula: 

𝐿𝑖,𝑡
∗ =

𝑦𝑖,𝑡
∗

𝛼
 

If the firm understands that its own liquidity (𝑀𝑖,𝑡−1) is not enough, it approaches the bank for the 

necessary financing (𝑤𝐿𝑖,𝑡
∗ − 𝑀𝑖,𝑡−1). 

The bank decides on the maximum amount of credit to be granted to firm 𝑖 on the basis of the 

fulfilment of the capital requirements and the loans already granted. The total amount of financing 

provided to firm 𝑖 is: 

𝐵𝑖,𝑡
𝑛𝑒𝑤 = 𝑚𝑖𝑛 (𝑚𝑎𝑥(𝑤𝐿𝑖,𝑡

∗ − 𝑀𝑖,𝑡−1, 0) ,
𝐸𝑡−1

𝜁𝑁𝑐
− 𝐵𝑖,𝑡−1) 

where 𝐸𝑡−1 is the bank's capital in period 𝑡 − 1, 𝜁 is a constant responsible for the capital adequacy 

ratio,18 and 𝑁𝑐 is the number of C-firms. The interest rate at which the new loan is granted is set 

taking into account the company's desired debt-to-asset ratio (𝜆𝑖,𝑡): 

𝑟𝑖,𝑡
𝑛𝑒𝑤 = 𝑟(1 + 𝜇𝑖,𝑡𝜆𝑖,𝑡

0.5) 

𝜆𝑖,𝑡 =
𝑚𝑎𝑥(𝑤𝐿𝑖,𝑡

∗ − 𝑀𝑖,𝑡−1, 0) + 𝐵𝑖,𝑡−1

𝑚𝑎𝑥(𝑤𝐿𝑖,𝑡
∗ − 𝑀𝑖,𝑡−1, 0) + 𝐵𝑖,𝑡−1 + 𝐸𝑖,𝑡−1

𝑐 + 10−8
 

where 𝑟𝑖,𝑡
𝑛𝑒𝑤 is the interest rate on the loan received by firm 𝑖 in period 𝑡, 𝑟 is the risk-free interest 

rate, and 𝜇𝑖,𝑡 is a random variable from a uniform distribution with a zero lower bound and upper 

bound 𝜇. The new volume of loans (𝐵𝑖,𝑡
∗ ) and the average interest rate (𝑟𝑖,𝑡) for firm 𝑖 are thus: 

𝐵𝑖,𝑡
∗ = 𝐵𝑖,𝑡

𝑛𝑒𝑤 + 𝐵𝑖,𝑡−1 

𝑟𝑖,𝑡 =
𝐵𝑖,𝑡

𝑛𝑒𝑤

𝐵𝑖,𝑡
∗ 𝑟𝑖,𝑡

𝑛𝑒𝑤 +
𝐵𝑖,𝑡−1

𝐵𝑖,𝑡
∗ 𝑟𝑖−1,𝑡 

The final step before production is the hiring of labour. The firms post vacancies to find 

workers knowing the level of funds available and the desired output. Each firm posts new vacancies 

if 

                                                 

 

18 Not necessarily equal to it. 
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𝑉𝑖,𝑡 = 𝑟𝑜𝑢𝑛𝑑 (min (𝐿𝑖,𝑡
∗ − 𝐿𝑖,𝑡−1,

𝑀𝑖,𝑡−1 + 𝐵𝑖,𝑡
𝑛𝑒𝑤

𝑤
)) > 0 

and fires employees if 𝑉𝑖,𝑡 < 0. The labour market operates in 𝑍𝑒 rounds, and the workers are sorted 

randomly. In each round, the workers approach their employers, and if the firm has more labour than 

it needs, it fires those who arrive earliest. The unemployed approach randomly selected firms and get 

jobs if there are unfilled vacancies. 

After the labour market stage, the firms produce goods, pay wages, and sell their goods. In 

the goods market, a search mechanism similar to that described for the labour market operates. The 

consumers form their desired consumption budgets (𝐶𝐵𝑗,𝑡
∗ ), which consist of estimates of permanent 

income (𝑃𝐼𝑗,𝑡) and current wealth (𝑊𝑗,𝑡): 

𝑃𝐼𝑗,𝑡 = Σ𝑃𝐼𝑗,𝑡−1 + (1 − Σ)𝐼𝑗,𝑡 

𝐶𝐵𝑗,𝑡
∗ = 𝜓𝑃𝐼𝑗,𝑡 + 𝜒𝑊𝑗,𝑡 

where 𝐼𝑗,𝑡 is the income of consumer 𝑗 in time period 𝑡, equal to the sum of dividends minus the 

recapitalization of bankrupt firms (see below) and wages after taxes, if the consumer is employed, 

and unemployment benefits 𝑧𝑤, if the consumer is unemployed, Σ is the smoothing parameter in 

estimating permanent income, and 𝜓 and 𝜒 are the shares of permanent income and wealth, which 

are used to form the desired budget for consumption. If the desired consumption budget is less than 

current welfare, it is the consumption budget, otherwise the consumption budget is half of current 

welfare. The consumers randomly select 𝑍с firms and visit them in 𝑍с rounds with given consumption 

budgets. In the first round, the consumer goes to the firm with the lowest price among those selected 

and buys goods from it. If the firm does not have enough goods to meet the demand of the consumer, 

the consumer buys whatever is available and saves the remaining budget for the next round. 

Each period, the firms return fixed share 𝜃 of debt to the banks. The firms with positive profits 

pay dividends to households (all equally) equal to the minimum of share 𝜏 of profit and the current 

liquidity held by the firm. The firms that have negative equity after all the previous steps are bankrupt 

(the bank loses the difference between the loans and the firms’ liquidity). All their employees become 

unemployed. These firms are replaced by new firms, which enter the market with zero debt and with 

equity and liquidity equal to the average equity of the non-bankrupt firms. The creation of firms is 

financed by households in equal proportions. If the total wealth of households is less than the amount 

of money needed to create new firms, the size of new firms is proportionally reduced. Also, if a 

household does not have enough wealth to finance all firms in the recapitalization step, it receives a 

non-repayable transfer from the government in the amount of the missing funds. 
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The firms must set values for variables such as price, previous output, and demand when they 

enter the market. We consider two variants of how this is done, assuming in a certain sense a uniform 

prior distribution for the two different models. In the first of them, the firms set the variables based 

on the values of the predecessor firm; in the second, the firms set the values on the basis of market 

averages. 

At this point the period ends, and all aggregate variables are calculated and added to the 

observed dataset as the variables of period 𝑡. 

 

Table B1. Parameter values and prior distributions 

Parameter Description Value Prior distribution 

𝑁𝑤 Number of households 500 - 

𝑁𝑐 Number of C-firms 50 - 

𝑍𝑐 Number of rounds in goods market 2 - 

𝑍𝑒 Number of rounds in labour market 4 - 

𝛼 Labour productivity 0.5 - 

𝜏 Share of dividends 0.2 - 

𝑟 Risk-free interest rate 0.01 - 

𝑤  Wage 1 - 

𝑧 Unemployment benefit to wage ratio 0.5 - 

Σ Smoothing parameter in estimating permanent income - 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0; 1) 

𝜓 Share of permanent income in consumption budget - 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.5; 1) 

𝜒 Share of welfare in consumption budget - 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0; 1) 

𝜌 Upper bound on change in output - 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0; 0.5) 

𝜂 Upper bound on change in price - 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0; 0.5) 

𝜇 Upper bound on risk premium - 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0; 2) 

𝜃 Share of loans returned - 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.01; 0,1) 

𝑡𝑤 Wage tax - 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0; 0.3) 

𝑁𝑒𝑤𝑣𝑎𝑙𝑢𝑒𝑠  Variables setting mechanism after bankruptcy - 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(2; 0.5) 
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Appendix C. Conditional forecasting for generalized architecture 

In this appendix, we run additional experiments for a neural network with a generalized 

architecture, which can be used in cases other than those in which the scenarios are built based on 

observable variables. As discussed in Section 3.2, one implementation of such an architecture relies 

on the addition of scenarios at the level of the fully connected layers. We tried various 

hyperparameters, including those at the level of the fully connected layers, and show results for a 

model with 5 layers and 100 neurons on each of them. This model is trained for 10 hours (1,000,000 

iterations with a batch size of 100) and shows the best results. The task is the same problem as that 

used for the conditional forecasting. Despite the fact that it does not contain unobservable variables, 

this task is quite suitable for testing a more general architecture and its properties, since the model 

trained in Section 4.3 can be used as a benchmark in estimating the quality. 

Figure C1 shows predictions on the same data as is used in the main part of the paper. 

Although the results are similar, they do nevertheless differ. However, as can be seen from a 

comparison of the results in Table C1 and Table 5, the model with the generalized architecture yields 

the worst results. The standardized error test (Figures C2 and C3) also shows the presence of a larger 

bias in the mean than in the case of the architecture described in Section 3.2. Moreover, despite the 

fact that the mean biases are in several cases comparable in magnitude to those obtained for the 

unconditional forecast model (Tables 3 and 4), they are systematic in nature and are not related to 

the drift of the coefficients as we saw from the training process. However, as noted earlier in Section 

5, the development of formal statistical procedures or averaging models is necessary for such 

conclusions to be made more systematic. 

All of the above signals that the alternative architecture considered here does not produce 

forecasts that approximates the characteristics of the posterior distribution. Nevertheless, Figure C1 

demonstrates that the results obtained are close to those of Section 4.3, and in some tasks, this 

approximation quality may be sufficient. However, the decision regarding the sufficiency of the 

approximation quality should be made for each specific problem separately, based on the goals of 

the creation of the model and the risks posed by approximation errors. 
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Table C1. Comparison of conditional forecasting properties of VAR model and neural 

network approximating ABM, generalized architecture (MSFE is the ratio of the mean 

squared errors of the VAR and the neural network; LPS is the difference in the mean log 

predictive scores of the VAR and the neural network) 

 

 

 

 

 

 

 

 

 

 

 

 

Significance level: *(10%), **(5%), ***(1%) 

 

Figure C1. Neural network conditional forecasts for ABM (upper graph is generalized 

architecture; lower graph is architecture from Section 3.2) 

 

 

Forecasting horizon MSFE LPS 

1 1.076*** -0.175** 

2 1.101*** -0.161*** 

3 1.127*** -0.119*** 

4 1.16*** -0.134*** 

5 1.17*** -0.148*** 

6 1.167*** -0.143*** 

7 1.172*** -0.146*** 

8 1.174*** -0.152*** 

9 1.18*** -0.158*** 

10 1.192*** -0.165*** 

11 1.181*** -0.183*** 

12 1.112*** -0.121*** 



Amortized Neural Networks for Agent-Based Model Forecasting 36 

_______________________________________________________________________________ 

 

 

Figure C2. Distributions of standardized forecast errors for conditional forecast from ABM, 

generalized architecture 

 

 

 

Figure C3. Distributions of products of standardized forecast errors for conditional forecast 

from ABM, generalized architecture 

 

 

 


